首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2040篇
  免费   192篇
  2022年   34篇
  2021年   72篇
  2020年   31篇
  2019年   47篇
  2018年   50篇
  2017年   26篇
  2016年   54篇
  2015年   118篇
  2014年   108篇
  2013年   109篇
  2012年   163篇
  2011年   164篇
  2010年   79篇
  2009年   69篇
  2008年   91篇
  2007年   103篇
  2006年   99篇
  2005年   87篇
  2004年   57篇
  2003年   63篇
  2002年   58篇
  2001年   31篇
  2000年   25篇
  1999年   41篇
  1998年   11篇
  1997年   11篇
  1996年   10篇
  1992年   22篇
  1991年   14篇
  1990年   9篇
  1989年   17篇
  1988年   13篇
  1987年   12篇
  1986年   19篇
  1985年   10篇
  1984年   17篇
  1983年   12篇
  1981年   9篇
  1980年   10篇
  1979年   18篇
  1978年   13篇
  1977年   10篇
  1976年   23篇
  1975年   14篇
  1974年   10篇
  1973年   30篇
  1972年   12篇
  1969年   13篇
  1968年   10篇
  1966年   10篇
排序方式: 共有2232条查询结果,搜索用时 31 毫秒
41.
42.
A 40-kD protein kinase C (PKC)epsilon related activity was found to associate with human epithelial specific cytokeratin (CK) polypeptides 8 and 18. The kinase activity coimmunoprecipitated with CK8 and 18 and phosphorylated immunoprecipitates of the CK. Immunoblot analysis of CK8/18 immunoprecipitates using an anti-PKC epsilon specific antibody showed that the 40-kD species, and not native PKC epsilon (90 kD) associated with the cytokeratins. Reconstitution experiments demonstrated that purified CK8 or CK18 associated with a 40-kD tryptic fragment of purified PKC epsilon, or with a similar species obtained from cells that express the fragment constitutively but do not express CK8/18. A peptide pseudosubstrate specific for PKC epsilon inhibited phosphorylation of CK8/18 in intact cells or in a kinase assay with CK8/18 immunoprecipitates. Tryptic peptide map analysis of the cytokeratins that were phosphorylated by purified rat brain PKC epsilon or as immunoprecipitates by the associated kinase showed similar phosphopeptides. Furthermore, PKC epsilon immunoreactive species and CK8/18 colocalized using immunofluorescent double staining. We propose that a kinase related to the catalytic fragment of PKC epsilon physically associates with and phosphorylates cytokeratins 8 and 18.  相似文献   
43.
Protein kinase C (PKC) has been implicated in a variety of cellular responses such as proliferation, differentiation, and secretion. We assessed the role of PKC in the mitogenic effects of gastrin-releasing peptide (in a small cell lung cancer (SCLC) cell line. Using antisera that specifically recognize the PKC isoforms alpha, beta, gamma, delta, and epsilon, we determined that PKC epsilon is the major isoform in the SCLC cell line NCI-N417, followed by PKC alpha and delta. In addition to the 90-kDa PKC epsilon, our anti-PKC epsilon antiserum specifically detected a 40-kDa immunoreactive protein. Treatment of the cells with either 20 nM phorbol myristate acetate or 50 nM GRP enhanced significantly the level of the 40-kDa protein in a time-dependent (1-8 h), cycloheximide-sensitive fashion. Subcellular fractionation revealed that 90% of PKC epsilon was in particulate form, while the 40-kDa immunoreactive protein was cytosolic. To test the hypothesis that the 40-kDa soluble protein represented a catalytically independent PKC epsilon fragment, cytosolic extracts were assayed for kinase activity. 45-50% of the activity was apparent in the absence of the PKC activators phosphatidylserine and diacylglycerol. This effector-independent kinase activity was further purified by affinity chromatography using a synthetic peptide corresponding to the pseudosubstrate region of PKC epsilon (ERMRPRKRQGAVRRRV) coupled to Sepharose. The partially purified protein, recognized by the anti-PKC epsilon antiserum, exhibited histone kinase activity with kinetics similar to those of the tryptically generated catalytic fragment of brain PKC epsilon. This activity was inhibited by staurosporine (IC50 = 1 x 10(-8) M) and by the pseudosubstrate inhibitor peptide (IC50 = 7.7 x 10(-8) M). The SCLC kinase and the brain PKC epsilon catalytic fragment were similar as indicated by the relative sizes of the PKC epsilon immunoreactive peptides generated with protease V8 from Staphylococcus aureus (Mr approximately 37,000, 34,000, 28,000, 26,000, and 25,000). Taken together, we conclude that a variant SCLC cell line expresses a constitutively active catalytic fragment of PKC epsilon. Regulation by 12-O-tetradecanoyl-13-acetate or GRP via de novo protein synthesis suggests a novel mechanism of control of PKC diversity with implications for small cell lung cancer and possibly other malignancies.  相似文献   
44.
This study examined levels of insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/M6PR) mRNA in tissues of rats at different stages of growth. Northern blot analysis of total RNA from tissues of rats aged 2, 9, 21 and 42 days and from 21 day fetal rats was carried out using a cDNA probe to the IGF-II/M6PR. Northern blots showed this probe hybridized to a single 9kb band in all tissues tested. Highest hybridization signals were detected in fetal and neonatal tissues with levels rapidly decreasing after birth. For all age groups tested the highest signal was obtained with heart followed by muscle, lung, and kidney, with liver and brain showing lower levels of message. These results indicate that IGF-II/M6PR mRNA is developmentally regulated, and suggest a role for the IGF-II/M6PR in fetal and neonatal growth.  相似文献   
45.
A variety of preparative methods for in situ X-ray energy dispersive analysis were tested to determine their effects on the elemental composition of polyphosphate bodies in P. boryanum. The bodies were found to contain large amounts of P and K and small amounts of Ca and Mg. Air drying, freeze-drying and freeze-drying from a liquid nitrogen slush all gave similar results. Fixation of the cells in glutaraldehyde and/or OsO4 resulted in loss of the K and enhancement of the Ca peak. Magnesium was lost during embedding in epoxy.  相似文献   
46.
Linear saturated fatty acid methyl esters were comitogenic with lectins for mouse lymphocytes, the degree of comitogenicity being strongly dependent on the length of the acyl group, and maximal for methyl tetradecanoate. Lesser effects were found for analogs with 10, 12 or 16 acyl carbon atoms, whereas those with fewer than 10 or more than 16 were inactive. Analogous structure-function relationships have been described for various membrane-active and tumor-promoting phorbol diesters, where there is a similar dependence on ester acyl group length for many activities. The fatty acid esters may therefore represent simple model compounds for studying mechanistic aspects of phorbol diester activity.  相似文献   
47.
DNA has been implicated as the nuclear acceptor for receptor-glucocorticoid complexes. The present study concerns the interaction of these complexes, isolated from cultured rat hepatoma cells, with purified DNA. This association is rapid, reaching a maximum within a few minutes at 0 degrees, whereas dissociation requires several hours. DNA binds neither free glucocorticoids nor those complexed with transcortin or cytosol proteins different from the receptor. Receptors which are not complexed by steroid have little or no affinity for DNA. "Activation," necessary for the binding of receptor-steroid complexes to isolated nuclei, also enhances DNA binding. The capacity of DNA for binding receptor-steroid complexes is large; saturation was not observed at the complex concentrations studied, using either crude or partially purified receptor preparations. The association of complexes with DNA is inhibited by divalent cations, at increasing ionic strengths, and by mercurial reagents. Complexes bind equally well to bacterial, bacteriophage, or rat DNA; however, there was either no or substantially reduced binding by bacterial 23 S rRNA. The binding of complexes to native DNA is roughly 3-fold greater than to denatured DNA. These characteristics are consistent with the possibility that DNA is the nuclear acceptor for receptor-glucocorticoid complexes; however, the actual composition of the acceptor sites remains unknown.  相似文献   
48.
Dialyzed rabbit liver cytosol was specifically freed of endogenous fructose-1,6-diphosphatase by immunoadsorption on a column of Sepharose-immobilized anti-fructose-1,6-diphosphatase. This material increased the specific activity of homogeneous enzyme to the maximal rate observed with EDTA and shifted the pH optimum from 8.4 to 7.4. With oleate or other fatty acids as activators, the hydrolysis of fructose-1,6-diphosphatase by enzyme, at neutral pH, showed nonlinear initial rates dropping to lower linear rates. Cytosol activator acted synergistically with oleate both to increase neutral enzyme activity and to maintain the high initial catalytic rates. After sucrose density centrifugation or gel filtration, the cytosol had no effect by itself, but still potentiated oleate activation. The factor was destroyed by treatment with subtilisin or trypsin, but all attempts to identify a unique protein component in cytosol were unsuccessful. The presence of Na dodecyl-SOJ, deoxycholate, or urea did not improve the resolution of the factor, but these compounds did lower the K50 for activation by cytosol. Since fatty acids are the only unique compounds which have been isolated from cytosol which activated fructose-1,6-diphosphatase, it appears that soluble proteins can act as natural carriers for the fatty acids. This was supported by the fact that both dialyzed rabbit alpha-globulins and muscle phosphofructokinase also acted synergistically with oleate in a manner similar to cytosol. Phosphatidic acid and phosphatidylserine activated fructose-1,6-diphosphatase, and their action was synergistic with oleate. Glutathione (1 mM) activated the enzyme 5-fold at pH 7.3 and its effects were additive with oleate and cytosol or alpha-globulins.  相似文献   
49.
50.
Apoptosis is a key process in the response of tumours to chemotherapeutic agents. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in many tumor cells, while sparing most normal cells. Several chemotherapeutic drugs synergize with TRAIL in reducing tumor growth and inducing apoptosis. Because some tumour cells respond poorly to these treatments, biomarkers that predict clinical responsiveness are needed. This study used surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) to identify novel apoptotic markers in TRAIL and etoposide (T+E)-treated MDA-MB-231 and ZR-75-1 breast cancer cells and MCF-10A non-transformed breast cells. T+E induced apoptosis, increasing caspase-3 activity at 4-8h, in all cell lines. Protein profiles revealed two prominent peaks, m/z 10090 and 8560, which decreased significantly during apoptosis. Mass spectrometry sequencing of tryptic peptides identified these proteins as S100A6 (confirmed immunologically) and ubiquitin (confirmed against a purified standard), respectively. Caspase inhibition prevented the decrease in both proteins during T+E-induced apoptosis whereas proteasome inhibition combined with T+E further decreased ubiquitin, possibly by preventing its recycling. Using SELDI-TOF MS we have identified S100A6 and ubiquitin as potential protein markers of apoptosis. Further validation using patient samples is required to confirm their potential utility in monitoring the effectiveness of anti-cancer drugs in inducing tumour cell apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号