首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   21篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2018年   4篇
  2017年   8篇
  2016年   7篇
  2015年   8篇
  2014年   11篇
  2013年   13篇
  2012年   13篇
  2011年   10篇
  2010年   6篇
  2009年   3篇
  2008年   12篇
  2007年   10篇
  2006年   10篇
  2005年   8篇
  2004年   4篇
  2003年   9篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1994年   1篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1974年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1948年   1篇
  1936年   1篇
  1902年   1篇
  1901年   1篇
  1900年   1篇
  1892年   1篇
排序方式: 共有228条查询结果,搜索用时 46 毫秒
71.

Background

Fish fin is a widely used, non-lethal sample material in studies using stable isotopes to assess the ecology of fishes. However, fish fin is composed of two distinct tissues (ray and membrane) which may have different stable isotope values and are not homogeneously distributed within a fin. As such, estimates of the stable isotope values of a fish may vary according to the section of fin sampled.

Methods

To assess the magnitude of this variation, we analysed carbon (δ 13C), nitrogen (δ 15N), hydrogen (δ 2H) and oxygen (δ 18O) stable isotopes of caudal fin from juvenile, riverine stages of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Individual fins were sub-sectioned into tip, mid and base, of which a further subset were divided into ray and membrane.

Findings

Isotope variation between fin sections, evident in all four elements, was primarily related to differences between ray and membrane. Base sections were13C depleted relative to tip (~ 1 ‰) with equivalent variation evident between ray and membrane. A similar trend was evident in δ 2H, though the degree of variation was far greater (~ 10 ‰). Base and ray sections were 18O enriched (~ 2 ‰) relative to tip and membrane, respectively. Ray and membrane sections displayed longitudinal variation in 15N mirroring that of composite fin (~ 1 ‰), indicating that variation in15N values was likely related to ontogenetic variation.

Conclusions

To account for the effects of intra-fin variability in stable isotope analyses we suggest that researchers sampling fish fin, in increasing priority, 1) also analyse muscle (or liver) tissue from a subsample of fish to calibrate their data, or 2) standardize sampling by selecting tissue only from the extreme tip of a fin, or 3) homogenize fins prior to analysis.  相似文献   
72.
TD Perry  M Zinn  R Mitchell 《Biofouling》2013,29(2):147-153

The marine bacterium, Halomonas marina (ATCC 27129), was shown to inhibit settlement and development of the sessile invertebrates Balanus amphitrite and Bugula neritina. Different bacterial treatments were employed to investigate this interaction. Filmed bacteria and liquid suspensions of whole cells, lysed cells and culture filtrate all reduced settlement of B. amphitrite. Polyurethane coatings containing whole cells were partially inhibitory while lysed cells caused complete inhibition of B. amphitrite larval settlement. In contrast, culture filtrate in a polyurethane matrix stimulated settlement of B. amphitrite larvae. Whole cells, culture filtrate, and lysed cells embedded in a polyurethane coating also controlled B. neritina settlement and maturation.  相似文献   
73.

Objectives

Peripheral neuropathy is the most common neurological complication in end-stage kidney disease. While high flux hemodialysis (HFHD) and hemodiafiltration (HDF) have become the preferred options for extracorporeal dialysis therapy, the effects of these treatments on nerve excitability have not yet been examined.

Methods

An observational proof-of-concept study of nerve excitability and neuropathy was undertaken in an incident dialysis population (n = 17) receiving either HFHD or HDF. Nerve excitability techniques were utilised to assess nerve ion channel function and membrane potential, in conjunction with clinical assessment and standard nerve conduction studies. A mathematical model of axonal excitability was used to investigate the underlying basis of the observed changes. Nerve excitability was recorded from the median nerve, before, during and after a single dialysis session and correlated with corresponding biochemical markers. Differences in nerve excitability were compared to normal controls with longitudinal follow-up over an 18 month period.

Results

Nerve excitability was performed in patient cohorts treated with either HFHD (n = 9) or online HDF (n = 8), with similar neuropathy status. Nerve excitability measures in HDF-treated patients were significantly closer to normal values compared to HFHD patients obtained over the course of a dialysis session (p<0.05). Longitudinal studies revealed stability of nerve excitability findings, and thus maintenance of improved nerve function in the HDF group.

Conclusions

This study has provided evidence that nerve excitability in HDF-treated patients is significantly closer to normal values prior to dialysis, across a single dialysis session and at longitudinal follow-up. These findings offer promise for the management of neuropathy in ESKD and should be confirmed in randomised trials.  相似文献   
74.
Ethnobotanical field studies were conducted for the first time in the KwaNibela Peninsula of southern Maputaland, KwaZulu-Natal, to document indigenous knowledge about useful plants. The vernacular names and uses of 82 plant species were recorded and compared to published Zulu and Swazi knowledge. Medicines for skin disorders, toothache, wounds, worms, chest and throat ailments, infertility and purgatives are still commonly used. Superstition and divination play a major role in the traditional knowledge system of the people of KwaNibela with 24 plants used for this purpose. Three KwaNibela medicinal plants (Erythroxylum delagoense, Putterlickia verrucosa, and Teclea natalensis) appear to be new records, not previously reported in the general scientific literature. The list also includes 61 novel uses of plants and another 15 new variations on known (published) uses. Ten previously unpublished vernacular names are presented, together with an additional 19 new variants of known names. These new additions to the scientific literature confirm that indigenous knowledge in KwaZulu-Natal is not yet completely recorded.  相似文献   
75.
Double-stranded DNA bacteriophages and their eukaryotic virus counterparts have 12-fold head-tail connector assemblages embedded at a unique capsid vertex. This vertex is the site of assembly of the DNA packaging motor, and the connector has a central channel through which viral DNA passes during genome packaging and subsequent host infection. Crystal structures of connectors from different phages reveal either disordered residues or structured loops that project into the connector channel. Given the proximity to the translocating DNA substrate, these loops have been proposed to play a role in DNA packaging. Previous models have proposed structural motions in either the packaging ATPase or the connector channel loops as the driving force that translocates the DNA into the prohead. Here, we mutate the channel loops of the Bacillus subtilis bacteriophage φ29 connector and show that these loops have no active role in translocation of DNA. Instead, they appear to have an essential function near the end of packaging, acting to retain the packaged DNA in the head in preparation for motor detachment and subsequent tail assembly and virion completion.  相似文献   
76.
A study was carried out, primarily in northern Scotland, to relate bill and wing measurements to diagnostic calls of crossbill species, and thereby use the calls to describe the distributions and habitats of the different species. Bill depth and wing length measurements from museum specimens and live‐trapped birds were used to describe the size categories. Almost all measurements of crossbills from England were similar to measurements of Common Crossbills from Fennoscandia. Museum specimens showed that crossbills in northern Scotland between 1822 and 1990 were a combination of Common Crossbills, birds which were intermediate between Common and Parrot Crossbills (Scottish Crossbills), and perhaps a few Parrot Crossbills. However, catches of crossbills between 1995 and 2000 showed that Parrot Crossbills (based on bill and wing measurements) were present at some sites in the Highlands. Recordings of flight calls and excitement calls of birds of known bill sizes allowed a classification of crossbills according to call types. Four different flight calls (referred to here as types 1–4) and five excitement calls (types A–E) were recognized. A sample of small‐billed birds, thereby identified as Common Crossbills, indicated that there were three groups of Common Crossbills: those giving type 1 flight calls and type A excitement calls (1A), type 2 flight calls and type B excitement calls (2B), and type 4 flight calls and type E excitement calls (4E). Large‐billed birds identified as Parrot Crossbills gave mainly type 2 flight calls and type D excitement calls. Birds with intermediate bill depths (Scottish Crossbills) gave type 3 flight calls and type C excitement calls. Distributions based on calls showed that 1A Common Crossbills were widespread in Scotland but the other types of Common Crossbill were rare. Parrot Crossbills were found in a few localities in the Highlands, and Scottish Crossbills (defined as those giving type 3 flight calls and type C excitement calls) were restricted to the northern and eastern Highlands. Scottish Crossbills and 1A Common Crossbills had overlapping distributions, and overlapped greatly in the types of forests they used between January and March when the Scots Pine cones were still closed. However, Scottish Crossbills were more frequently associated with stands containing Scots Pine compared with Common Crossbills.  相似文献   
77.
The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-13C]glycine (a photorespiratory intermediate) stimulated emissions of [13C1–5]isoprene and 13CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures.Many plant species emit isoprene (2-methyl-1,3-butadiene [C5H8]) into the atmosphere at high rates (Sharkey and Yeh, 2001). With an estimated emission rate of 500 to 750 teragram per year by terrestrial ecosystems (Guenther et al., 2006), isoprene exerts a strong control over the oxidizing capacity of the atmosphere. Due to its high reactivity to oxidants, it fuels an array of atmospheric chemical and physical processes affecting air quality and climate, including the production of ground-level ozone in environments with elevated concentrations of nitrogen oxides (Atkinson and Arey, 2003; Pacifico et al., 2009) and the formation/growth of organic aerosols (Nguyen et al., 2011). At the plant level, isoprene provides protection from stress, through stabilizing membrane processes (Sharkey and Singsaas, 1995; Velikova et al., 2011) and/or reducing the accumulation of damaging reactive oxygen species in plant tissues under stress (Loreto et al., 2001; Vickers et al., 2009b; Velikova et al., 2012). While the mechanism(s) are still under investigation, isoprene may directly or indirectly stabilize hydrophobic interactions in membranes (Singsaas et al., 1997), minimize lipid peroxidation (Loreto and Velikova, 2001), and directly react with reactive oxygen species (Kameel et al., 2014), yielding first-order oxidation products methyl vinyl ketone and methacrolein (Jardine et al., 2012, 2013). The two main environmental drivers for global changes in isoprene fluxes are light and temperature (Guenther et al., 2006). Isoprene production is closely linked to net photosynthesis, and both isoprene emissions and net photosynthesis are controlled by light intensity (Monson and Fall, 1989). There is also a positive correlation between net photosynthesis and isoprene emissions as leaf temperatures increase up to the optimum temperature for net photosynthesis (Monson et al., 1992).Despite the close correlation between photosynthesis and isoprene emissions, plant enclosure observations and leaf-level analyses have both shown that the fraction of net photosynthesis dedicated to isoprene emissions is not constant. During stress events that decrease net photosynthetic rates, isoprene emissions are often less affected or even stimulated; this results in an increase in relative isoprene production from 1% to 2% of net photosynthesis under normal conditions to 15% to 50% under extreme stress (Goldstein et al., 1998; Fuentes et al., 1999; Kesselmeier et al., 2002; Harley et al., 2004). In severe stress conditions such as drought, isoprene emissions can even continue in the complete absence of photosynthesis (Fortunati et al., 2008). An uncoupling of isoprene emissions from net photosynthesis has also been observed in a number of other studies where the optimum temperature for isoprene emissions was found to be substantially higher than that of net photosynthesis; under the high-temperature conditions, isoprene emissions can account for more than 50% of net photosynthesis (Sharkey and Loreto, 1993; Lerdau and Keller, 1997; Harley et al., 2004; Magel et al., 2006).Analyses of carbon sources using 13CO2 leaf labeling have revealed that under standard conditions (i.e. leaf temperature of 30°C and photosynthetically active radiation [PAR] levels of 1,000 µmol m–2 s–1), isoprene is produced primarily (70%–90%) using carbon directly derived from the Calvin cycle (Delwiche and Sharkey, 1993; Affek and Yakir, 2002; Karl et al., 2002) via the chloroplastic methylerythritol phosphate (MEP) isoprenoid pathway (Zeidler et al., 1997). The relative contributions of photosynthetic and alternate carbon sources for isoprene are now recognized as being variable under different environmental conditions. Changes in net photosynthesis rates under drought stress (Funk et al., 2004; Brilli et al., 2007), salt stress (Loreto and Delfine, 2000), and changes in ambient O2 and CO2 concentrations (Jones and Rasmussen, 1975; Karl et al., 2002; Trowbridge et al., 2012) alter their relative contributions. Under heat stress-induced photosynthetic limitation in Populus deltoides (a temperate species), an increase in the relative contribution of alternate carbon sources was also observed (Funk et al., 2004). However, our current understanding of the responses of isoprene carbon sources to changes in temperature and light levels is poor, and the connection(s) of these responses to changes in leaf primary carbon metabolism (e.g. photosynthesis, photorespiration, and respiration) remains to be determined.Studies over the last decade have shown or suggested that potential alternate carbon sources include refixation of respired CO2 (Loreto et al., 2004), intermediates from the cytosolic mevalonate (MVA) isoprenoid pathway (Flügge and Gao, 2005; Lichtenthaler, 2010), and intermediates from central carbon metabolism, including pyruvate (Jardine et al., 2010), phosphoenolpyruvate (Rosenstiel et al., 2003), and Glc (Schnitzler et al., 2004). Over 40 years ago, it was also proposed that photorespiratory carbon could directly contribute to isoprene production in plants (Jones and Rasmussen, 1975); however, subsequent studies (Monson and Fall, 1989; Hewitt et al., 1990; Karl et al., 2002) have concluded that photorespiration does not contribute to isoprenoid production.In this study, we examined the carbon composition of isoprene emitted from tropical tree species under changes in light and temperature, the two key environmental variables that affect isoprene emissions. Using a novel real-time analytical approach, we were able to observe compensatory changes in carbon source contribution to isoprene during thermal ramping at high temperatures, despite the overall isoprene emissions remaining relatively stable. By conducting leaf temperature curves under variable 13CO2 concentrations and applying [2-13C]Gly leaf labeling, we also reopen the discussion on the role of photorespiration as an alternate source of carbon for isoprenoid formation.  相似文献   
78.
79.

Background

Urinary mercury concentrations are used in research exploring mercury exposure. Some theorists have proposed that autism is caused by mercury toxicity. We set out to test whether mercury concentrations in the urine of children with autism were significantly increased or decreased compared to controls or siblings.

Methods

Blinded cohort analyses were carried out on the urine of 56 children with autism spectrum disorders (ASD) compared to their siblings (n = 42) and a control sample of children without ASD in mainstream (n = 121) and special schools (n = 34).

Results

There were no statistically significant differences in creatinine levels, in uncorrected urinary mercury levels or in levels of mercury corrected for creatinine, whether or not the analysis is controlled for age, gender and amalgam fillings.

Conclusions

This study lends no support for the hypothesis of differences in urinary mercury excretion in children with autism compared to other groups. Some of the results, however, do suggest further research in the area may be warranted to replicate this in a larger group and with clear measurement of potential confounding factors.  相似文献   
80.
Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress‐induced accumulation of reactive oxygen species (ROS), but the products of isoprene‐ROS reactions in plants have not been detected. Using pyruvate‐2‐13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biota–chemistry–climate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号