首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   86篇
  国内免费   1篇
  2023年   10篇
  2022年   12篇
  2021年   22篇
  2020年   11篇
  2019年   16篇
  2018年   13篇
  2017年   8篇
  2016年   18篇
  2015年   17篇
  2014年   39篇
  2013年   26篇
  2012年   35篇
  2011年   39篇
  2010年   24篇
  2009年   25篇
  2008年   29篇
  2007年   20篇
  2006年   21篇
  2005年   14篇
  2004年   18篇
  2003年   17篇
  2002年   17篇
  2001年   12篇
  2000年   8篇
  1999年   7篇
  1998年   14篇
  1997年   7篇
  1996年   14篇
  1995年   7篇
  1994年   6篇
  1993年   8篇
  1992年   8篇
  1991年   9篇
  1990年   8篇
  1989年   8篇
  1988年   5篇
  1987年   9篇
  1986年   5篇
  1985年   8篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有623条查询结果,搜索用时 15 毫秒
51.
52.
Two hairpin-loop domains in cystatin family proteinase inhibitors form an interface surface region that slots into the active site cleft of papain-like cysteine proteinases, and determine binding affinity. The slot region surface architecture of the soybean cysteine proteinase inhibitor (soyacystatin N, scN) was engineered using techniques of in vitro molecular evolution to define residues that facilitate interaction with the proteinase cleft and modulate inhibitor affinity and function. Combinatorial phage display libraries of scN variants that contain mutations in the essential motifs of the first (QVVAG) and second (EW) hairpin-loop regions were constructed. Approximately 1010-1011 phages expressing recombinant scN proteins were subjected to biopanning selection based on binding affinity to immobilized papain. The QVVAG motif in the first hairpin loop was invariant in all functional scN proteins. All selected variants (30) had W79 in the second hairpin-loop motif, but there was diversity for hydrophobic and basic amino acids in residue 78. Kinetic analysis of isolated scN variants identified a novel scN isoform scN(LW) with higher papain affinity than the wild-type molecule. The variant contained an E78L substitution and had a twofold lower Ki (2.1 pM) than parental scN, due to its increased association rate constant (2.6 +/- 0.09 x 107 M-1sec-1). These results define residues in the first and second hairpin-loop regions which are essential for optimal interaction between phytocystatins and papain, a prototypical cysteine proteinase. Furthermore, the isolated variants are a biochemical platform for further integration of mutations to optimize cystatin affinity for specific biological targets.  相似文献   
53.
Genome sequence of Yersinia pestis KIM   总被引:32,自引:0,他引:32       下载免费PDF全文
We present the complete genome sequence of Yersinia pestis KIM, the etiologic agent of bubonic and pneumonic plague. The strain KIM, biovar Mediaevalis, is associated with the second pandemic, including the Black Death. The 4.6-Mb genome encodes 4,198 open reading frames (ORFs). The origin, terminus, and most genes encoding DNA replication proteins are similar to those of Escherichia coli K-12. The KIM genome sequence was compared with that of Y. pestis CO92, biovar Orientalis, revealing homologous sequences but a remarkable amount of genome rearrangement for strains so closely related. The differences appear to result from multiple inversions of genome segments at insertion sequences, in a manner consistent with present knowledge of replication and recombination. There are few differences attributable to horizontal transfer. The KIM and E. coli K-12 genome proteins were also compared, exposing surprising amounts of locally colinear "backbone," or synteny, that is not discernible at the nucleotide level. Nearly 54% of KIM ORFs are significantly similar to K-12 proteins, with conserved housekeeping functions. However, a number of E. coli pathways and transport systems and at least one global regulator were not found, reflecting differences in lifestyle between them. In KIM-specific islands, new genes encode candidate pathogenicity proteins, including iron transport systems, putative adhesins, toxins, and fimbriae.  相似文献   
54.
Aminopeptidase inhibitors strongly affect the proliferation and function of immune cells in man and animals and are promising agents for the pharmacological treatment of inflammatory or autoimmune diseases. Membrane alanyl-aminopeptidase (mAAP) has been considered as the major target of these anti-inflammatory aminopeptidase inhibitors. Recent evidence also points to a role of the cytosol alanyl-aminopeptidase (cAAP) in the immune response. In this study we used quantitative RT-PCR to determine the mRNA expression of both cAAP and mAAP in resting and activated peripheral T cells and also in CD4+, CD8+, Th1, Th2 and Treg (CD4+ CD25+) subpopulations. Both mAAP and cAAP mRNAs were expressed in all cell types investigated, and in response to activation their expression appeared to be upregulated in CD8+ cells, but downregulated in Treg cells. In CD4+ cells, mAAP and cAAP mRNAs were affected in opposite ways in response to activation. The cAAP-specific inhibitor, PAQ-22, did not affect either cAAP or mAAP expression in activated CD4+ or CD8+ cells, whereas in activated Treg cells it markedly upregulated the mRNA levels of both aminopeptidases. The non-discriminatory inhibitor, phebestin, significantly increased the amount of mAAP and cAAP mRNA in CD4+ and that of cAAP in Treg cells.  相似文献   
55.
56.
Osmotin is a plant PR-5 protein. It has a broad spectrum of antifungal activity, yet also exhibits specificity for certain fungal targets. The structural bases for this specificity remain unknown. We show here that full sensitivity of Saccharomyces cerevisiae cells to the PR-5 protein osmotin is dependent on the function of MNN2, MNN4 and MNN6. MNN2 is an alpha-1, 2-mannosyltransferase catalyzing the addition of the first mannose to the branches on the poly l,6-mannose backbone of the outer chain of cell wall N-linked mannans. MNN4 and MNN6 are required for the transfer of mannosylphosphate to cell wall mannans. Null mnn2, mnn4 or mnn6 mutants lack phosphomannans and are defective in binding osmotin to the fungal cell wall. Both antimannoprotein antibody and the cationic dye alcian blue protect cells against osmotin cytotoxicity. MNN1 is an alpha-1,3-mannosyltransferase that adds the terminal mannose to the outer chain branches of N-linked mannan, masking mannosylphosphate. Null mnn1 cells exhibit enhanced osmotin binding and sensitivity. Several cell wall mannoproteins can bind to immobilized osmotin, suggesting that their polysaccharide constituent determines osmotin binding. Our results demonstrating a causal relationship between cell surface phosphomannan and the susceptibility of a yeast strain to osmotin suggest that cell surface polysaccharides of invading pathogens control target specificity of plant PR-5 proteins.  相似文献   
57.
Responses of somatic embryos of sweet potato (Ipomoea batata (L.) Poir., cv. White Star) at different developmental stages to in vitro inoculation with Glomus etunicatum (Becker and Gerdemann) (isolate INVAM FL329) were evaluated. Somatic embryos were grown in glass tubes containing sterilized vermiculite and sand. A layer of natrosol plus White's medium was used as a carrier for arbuscular mycorrhizal (AM) fungal spores. Survival of embryos inoculated with AM fungi was significantly (P < 0.05) greater than that of noninoculated embryos at the rooted-cotyledonary-torpedo and rooted-elongated-torpedo developmental stages. Mycorrhizae significantly (P < 0.05) increased plantlet formation only when inoculation occurred at the rooted-elongated-torpedo developmental stage. The growth stage at which the embryos were inserted into the glass tubes exerted a significant influence upon plantlet formation, and plantlet formation was further enhanced by inoculation with G. etunicatum. Plantlet formation was greatest at the rooted-elongated-torpedo stage. These results demonstrate that inoculation of somatic embryos with AM fungi improves embryo survival and plantlet formation, and could enhance use of somatic embryos as synthetic seeds.  相似文献   
58.
Saccharomyces cerevisiae Mre11, Rad50, and Xrs2 function in a protein complex that is important for nonhomologous recombination. Null mutants of MRE11, RAD50, and XRS2 are characterized by ionizing radiation sensitivity and mitotic interhomologue hyperrecombination. We mutagenized the four highly conserved phosphoesterase signature motifs of Mre11 to create mre11-11, mre11-2, mre11-3, and mre11-4 and assessed the functional consequences of these mutant alleles with respect to mitotic interhomologue recombination, chromosome loss, ionizing radiation sensitivity, double-strand break repair, and protein interaction. We found that mre11 mutants that behaved as the null were sensitive to ionizing radiation and deficient in double-strand break repair. We also observed that these null mutants exhibited a hyperrecombination phenotype in mitotic cells, consistent with previous reports, but did not exhibit an increased frequency of chromosome loss. Differential ionizing radiation sensitivities among the hypomorphic mre11 alleles correlated with the trends observed in the other phenotypes examined. Two-hybrid interaction testing showed that all but one of the mre11 mutations disrupted the Mre11-Rad50 interaction. Mutagenesis of the phosphoesterase signatures in Mre11 thus demonstrated the importance of these conserved motifs for recombinational DNA repair.  相似文献   
59.
Productive and sustainable agriculture necessitates growing plants in sub-optimal environments with less input of precious resources such as fresh water. For a better understanding and rapid improvement of abiotic stress tolerance, it is important to link physiological and biochemical work to molecular studies in genetically tractable model organisms. With the use of several technologies for the discovery of stress tolerance genes and their appropriate alleles, transgenic approaches to improving stress tolerance in crops remarkably parallels breeding principles with a greatly expanded germplasm base and will succeed eventually.  相似文献   
60.
Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号