首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1224篇
  免费   34篇
  1258篇
  2023年   2篇
  2022年   11篇
  2021年   10篇
  2020年   11篇
  2019年   14篇
  2018年   11篇
  2017年   17篇
  2016年   25篇
  2015年   27篇
  2014年   39篇
  2013年   72篇
  2012年   83篇
  2011年   88篇
  2010年   57篇
  2009年   43篇
  2008年   66篇
  2007年   76篇
  2006年   95篇
  2005年   85篇
  2004年   79篇
  2003年   84篇
  2002年   81篇
  2001年   17篇
  2000年   7篇
  1999年   8篇
  1998年   18篇
  1997年   9篇
  1996年   11篇
  1995年   9篇
  1994年   8篇
  1993年   6篇
  1991年   9篇
  1990年   4篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1978年   8篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
  1961年   1篇
  1956年   2篇
排序方式: 共有1258条查询结果,搜索用时 15 毫秒
11.
Dental composite materials contain polymers of methacrylates, which, due to mechanical abrasion and enzymatic action of saliva, may release their monomers into oral cavity and the pulp. Moreover, polymerization is always incomplete and leaves usually considerable fraction of free monomers. Mechanisms of the genotoxicity of methacrylate monomers have been rarely explored. As the polymerization of a monomer is catalyzed by a co-monomer, their combined action should be considered. In the present work, we investigated cytotoxic and genotoxic effects of urethane dimethacrylate (UDMA), often used as a monomer, at 1 mM, and triethylene glycol dimethacrylate (TEGDMA), a typical co-monomer, at 5 mM singly and in combination. Experiments were conducted on Chinese hamster ovary cells. Cell viability, apoptosis and cell cycle were assessed by flow cytometry, whereas DNA damage was evaluated by plasmid conformation test and comet assay. Both compounds decreased the viability of the cells, but did not induce strand breaks in an isolated plasmid DNA. However, both substances, either singly or in combination, damaged DNA in CHO cells as evaluated by comet assay. Both compounds induced apoptosis, but a combined action of them led to a decrease in the number of apoptotic cells. The combined action of UDMA and TEGDMA in the disturbance of cell cycle was lesser compared to the action of each compound individually. Individually, though UDMA and TEGDMA may induce cytotoxic and genotoxic, however, a combination of both does not produce a significant increase in these effects.  相似文献   
12.
Staphylokinase is a 135 amino acid protein produced by certain strains of Staphylococcus aureus. It belongs to fibrin-specific plasminogen activator. Staphylokinase converts plasminogen--the inactive proenzyme--to the plasmin, which dissolves the fibrin of a blood clots. This review will focus on the biochemical and thrombolytic properties of staphylokinase and its derivatives, which would make use of treatment in acute myocardial infarction and other cardiovascular diseases.  相似文献   
13.
14.
15.
Centromeres provide a region of chromatin upon which kinetochores are assembled in mitosis. Centromeric protein C (CENP-C) is a core component of this centromeric chromatin that, when depleted, prevents the proper formation of both centromeres and kinetochores. CENP-C localizes to centromeres throughout the cell cycle via its C-terminal part, whereas its N-terminal part appears necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore. We now find that all kinetochore proteins belonging to the KMN (KNL1/Spc105, the Mis12 complex, and the Ndc80 complex) network bind to the N-terminal part of Drosophila CENP-C. Moreover, we show that the Mis12 complex component Nnf1 interacts directly with CENP-C in vitro. To test whether CENP-C's N-terminal part was sufficient to recruit KMN proteins, we targeted it to the centrosome by fusing it to a domain of Plk4 kinase. The Mis12 and Ndc80 complexes and Spc105 protein were then all recruited to centrosomes at the expense of centromeres, leading to mitotic abnormalities typical of cells with defective kinetochores. Thus, the N-terminal part of Drosophila CENP-C is sufficient to recruit core kinetochore components and acts as the principal linkage between centromere and kinetochore during mitosis.  相似文献   
16.
17.
L1210 leukemic cells injected in vivo are eliminated from the blood and disintegrated in organs such as the lungs and liver. We present a compartmental model which reproduces one type of in vivo experiment, based on the so-called perfusion curves. Although the data are not complete and some are only approximated, modeling gives a consistent picture of the process.  相似文献   
18.
Hereditary nephrotic syndrome is caused by mutations in a number of different genes, the most common being NPHS2. The aim of the study was to identify the spectrum of NPHS2 mutations in Polish patients with the disease. A total of 141 children with steroid-resistant nephrotic syndrome (SRNS) were enrolled in the study. Mutational analysis included the entire coding sequence and intron boundaries of the NPHS2 gene. Restriction fragment length polymorphism (RFLP) and TaqMan genotyping assay were applied to detect selected NPHS2 sequence variants in 575 population-matched controls. Twenty patients (14 %) had homozygous or compound heterozygous NPHS2 mutations, the most frequent being c.1032delT found in 11 children and p.R138Q found in four patients. Carriers of the c.1032delT allele were exclusively found in the Pomeranian (Kashubian) region, suggesting a founder effect origin. The 14 % NPHS2 gene mutation detection rate is similar to that observed in other populations. The heterogeneity of mutations detected in the studied group confirms the requirement of genetic testing the entire NPHS2 coding sequence in Polish patients, with the exception of Kashubs, who should be initially screened for the c.1032delT deletion.  相似文献   
19.
The aim of this study was to produce suspension cultures of winter wheat directly from immature embryos bypassing the callus stage, and to determine their capacity for growth and regeneration in comparison to suspension cultures produced from callus. The study was carried out using Polish winter wheat varieties: ‘Grana’ and ‘Rosa’. Immature embryos were isolated, homogenized and transferred directly to liquid medium supplemented with 2,4-D. Actively dividing cell cultures were obtained within 2 months after the cultures were started. Suspension cultures from callus of immature embryos was also produced. With both cultivars, faster growth was observed in the suspension cultures produced directly from embryos than in the suspensions produced from callus. Metabolic activity was higher in the suspension culture produced directly from embryos than in the suspension derived from callus only in ‘Grana’. The production of 1-amiocyclopropane-1-carboxylic acid (ACC), an ethylene precursor, was lower in the suspension cultures produced directly from embryos than in the suspensions produced from callus. Morphogenic capacity was significantly higher in aggregates derived directly from embryos than in aggregates derived from callus. With ‘Rosa’, about one third of the aggregates derived directly from embryos regenerated shoots. Production of ACC was lower in ‘Rosa’ cell culture that regenerated then in other cell cultures that did not. Photosystem II reactions were more efficient in dark green aggregates than in light green or pale green aggregates which were unable to regenerate. With the method presented, wheat cell suspension cultures with a regeneration potential can be produced in 2 or 3 months less time than with traditional methods.  相似文献   
20.
Several bacterial genera express proteins that contain collagen-like regions, which are associated with variable (V) non-collagenous regions. The streptococcal collagen-like proteins, Scl1 and Scl2, of group A Streptococcus (GAS) are members of this 'prokaryotic collagen' family, and they too contain an amino-terminal non-collagenous V region of unknown function. Here, we use recombinant rScl constructs, derived from several Scl1 and Scl2 variants, and affinity chromatography to identify Scl ligands present in human plasma. First, we show that Scl1, but not Scl2, proteins from different GAS serotypes bind the same ligand identified as apolipoprotein B (ApoB100), which is a major component of the low-density lipoprotein (LDL). Scl1 binding to purified ApoB100 and LDL is specific and concentration-dependent. Furthermore, the non-collagenous V region of the Scl1 protein is responsible for LDL/ApoB100 binding because only those rScls, constructed by domain swapping, which contain the V region from Scl1 proteins, were able to bind to ApoB100 and LDL ligands, and this binding was inhibited by antibodies directed against the Scl1-V region. Electron microscopy images of Scl1-LDL complexes showed that the globular V domain of Scl1 interacted with spherical particles of LDL. Importantly, live M28-type GAS cells absorbed plasma LDL on the cell surface and this binding depended on the surface expression of the Scl1.28, but not Scl2.28, protein. Phylogenetic analysis showed that the non-collagenous globular domains of Scl1 and Scl2 evolved independently to form separate lineages, which differ in amino acid sequence, and these differences may account for the variations in binding patterns of Scl1 and Scl2 proteins. Present studies provide insight into the structure-function relationship of the Scl proteins and also underline the importance of lipoprotein binding by GAS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号