首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1284篇
  免费   42篇
  1326篇
  2023年   2篇
  2022年   12篇
  2021年   13篇
  2020年   12篇
  2019年   15篇
  2018年   12篇
  2017年   20篇
  2016年   28篇
  2015年   31篇
  2014年   45篇
  2013年   80篇
  2012年   85篇
  2011年   94篇
  2010年   62篇
  2009年   46篇
  2008年   72篇
  2007年   76篇
  2006年   101篇
  2005年   86篇
  2004年   79篇
  2003年   84篇
  2002年   81篇
  2001年   19篇
  2000年   8篇
  1999年   10篇
  1998年   18篇
  1997年   9篇
  1996年   11篇
  1995年   9篇
  1994年   9篇
  1993年   6篇
  1991年   9篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1978年   8篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
  1961年   1篇
  1956年   2篇
排序方式: 共有1326条查询结果,搜索用时 15 毫秒
901.
The rut pathway of pyrimidine catabolism is a novel pathway that allows pyrimidine bases to serve as the sole nitrogen source in suboptimal temperatures. The rut operon in E. coli evaded detection until 2006, yet consists of seven proteins named RutA, RutB, etc. through RutG. The operon is comprised of a pyrimidine transporter and six enzymes that cleave and further process the uracil ring. Herein, we report the structure of RutD, a member of the α/β hydrolase superfamily, which is proposed to enhance the rate of hydrolysis of aminoacrylate, a toxic side product of uracil degradation, to malonic semialdehyde. Although this reaction will occur spontaneously in water, the toxicity of aminoacrylate necessitates catalysis by RutD for efficient growth with uracil as a nitrogen source. RutD has a novel and conserved arrangement of residues corresponding to the α/β hydrolase active site, where the nucleophile's spatial position occupied by Ser, Cys, or Asp of the canonical catalytic triad is replaced by histidine. We have used a combination of crystallographic structure determination, modeling and bioinformatics, to propose a novel mechanism for this enzyme. This approach also revealed that RutD represents a previously undescribed family within the α/β hydrolases. We compare and contrast RutD with PcaD, which is the closest structural homolog to RutD. PcaD is a 3‐oxoadipate‐enol‐lactonase with a classic arrangement of residues in the active site. We have modeled a substrate in the PcaD active site and proposed a reaction mechanism. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   
902.
903.
Crystal structures of two orthologs of the regulatory subunit of acetohydroxyacid synthase III (AHAS, EC 2.2.1.6) from Thermotoga maritima (TM0549) and Nitrosomonas europea (NE1324) were determined by single-wavelength anomalous diffraction methods with the use of selenomethionine derivatives at 2.3 A and 2.5 A, respectively. TM0549 and NE1324 share the same fold, and in both proteins the polypeptide chain contains two separate domains of a similar size. Each protein contains a C-terminal domain with ferredoxin-type fold and an N-terminal ACT domain, of which the latter is characteristic for several proteins involved in amino acid metabolism. The ferredoxin domain is stabilized by a calcium ion in the crystal structure of NE1324 and by a Mg(H2O)(6)2+ ion in TM0549. Both TM0549 and NE1324 form dimeric assemblies in the crystal lattice.  相似文献   
904.
AIMS: The aim of our study was to analyse the serum level of interleukin 18 (IL-18) in coronary artery disease (CAD) patients with type 2 diabetes mellitus (DM), and to relate this to clinical findings. METHODS: The IL-18 level was measured by ELISA in serum samples from 130 CAD patients prior to their first, elective, coronary artery bypass surgery. Forty-three of them had been diabetic for several years. A control group consisted of 31 healthy people matched according to age, BMI, lipid and smoking status. RESULTS: The CAD patients with DM were similar to the non-diabetic CAD patients with respect to age, BMI, grade of heart failure, ejection fraction. There were no differences in the duration of CAD, history of myocardial infarction and PTCA or instability of angina. The serum level of IL-18 was higher in the CAD patients than in the control group. The CAD patients with DM had a higher concentration of IL-18 compared to the non-diabetic CAD group. The diabetic patients with triple-vessel disease were characterized by a higher concentration of IL-18 than the non-diabetic patients with the same grade of CAD. Smoking affected the IL-18 concentration, particularly in the diabetic patients. CONCLUSION: Type 2 DM predisposes patients, especially those with multi-vessel CAD who were smokers, to a higher serum level of IL-18, which may help explain their vulnerability to fatal, secondary cardiovascular events. These patients should be in the first line for stringent, secondary cardiovascular prevention.  相似文献   
905.
Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in humans and plays an important role in several essential biological processes such as bile acid conjugation, maintenance of calcium homeostasis, osmoregulation and membrane stabilization. Moreover, attenuation of apoptosis and its antioxidant activity seem to be crucial for the cytoprotective effects of taurine. Although these properties are not tissue specific, taurine reaches particularly high concentrations in tissues exposed to elevated levels of oxidants (e.g., inflammatory cells). It suggests that taurine may play an important role in inflammation associated with oxidative stress. Indeed, at the site of inflammation, taurine is known to react with and detoxify hypochlorous acid generated by the neutrophil myeloperoxidase (MPO)–halide system. This reaction results in the formation of less toxic taurine chloramine (TauCl). Both haloamines, TauCl and taurine bromamine (TauBr), the product of taurine reaction with hypobromous acid (HOBr), exert antimicrobial and anti-inflammatory properties. In contrast to a well-documented regulatory role of taurine and taurine haloamines (TauCl, TauBr) in acute inflammation, their role in the pathogenesis of inflammatory diseases is not clear. This review summarizes our current knowledge concerning the role of taurine, TauCl and TauBr in the pathogenesis of inflammatory diseases initiated or propagated by MPO-derived oxidants. The aim of this paper is to show links between inflammation, neutrophils, MPO, oxidative stress and taurine. We will discuss the possible contribution of taurine and taurine haloamines to the pathogenesis of inflammatory diseases, especially in the best studied example of rheumatoid arthritis.  相似文献   
906.
A number of different types of glycoconjugate are found associated with joint tissue and fluids, comprising glycoproteins, glycolipids and glycosaminoglycans. Oligosaccharide chains of glycoconjugates are degraded by exoglycosidases, and the dominant exoglycosidase found in human blood, synovial fluid, the synovial membrane and chondrocytes of articular cartilage is HEX (N-acetyl-β-hexosaminidase). HEX is localized mostly intracellularly in synovial cells. Serum activity of HEX may be used to monitor the course and efficiency of treatment of Lyme arthritis, and activity of HEX, above 10 μkat/kg of protein in the synovial fluid, suggests rheumatoid disease. There is a shortage of HEX inhibitors able to penetrate synoviocytes, so the development of drugs which inhibit synthesis and/or the activity of HEX will be a promising field for future investigations.  相似文献   
907.
Fuchs endothelial corneal dystrophy (FECD) is a slowly progressive eye disease leading to blindness, mostly affecting people above 40 years old. The only known method of curing FECD is corneal transplantation. The disease is characterized by the presence of extracellular deposits called “cornea guttata”, apoptosis of corneal endothelial cells, dysfunction of Descement’s membrane and corneal edema. Oxidative stress is suggested to play a role in FECD pathogenesis. Reactive oxygen species produced during the stress may damage biomolecules, including DNA. In the present study we evaluated the extent of endogenous DNA damage, including oxidatively modified DNA bases, and damage induced by hydrogen peroxide as well as the kinetics of DNA repair in peripheral blood mononuclear cells of 50 patients with FECD and 43 age-matched controls without visual disturbances. To quantify DNA damage and repair we used the alkaline comet assay technique with the enzymes recognizing oxidative DNA damage, hOGG1 and EndoIII. We did not observe differences in the extent of endogenous and hydrogen peroxide-induced DNA damage between FECD patients and controls. However, we found a lower efficacy of DNA repair in FECD patients as compared with control individuals. The results obtained suggest that the lowering of the DNA repair capacity may be one of the mechanisms underlying the role of oxidative stress in the FECD pathology.  相似文献   
908.
Leber hereditary optic neuropathy is a maternally inherited type of blindness caused by degeneration of the optic nerve. It is caused by point mutations in mitochondrial DNA. Like in other mitochondrial diseases, its penetrance and inheritance is complicated by heteroplasmy, tissue distribution, and the bottleneck phenomenon in oocyte maturation. On the cellular level, the mechanism of the disease development is still mysterious. Currently three theories of pathomechanism of LHON are considered: biochemical, ROS (reactive oxygen species) and apoptotic.  相似文献   
909.
910.
Using the comet assay, we showed that nickel chloride at 250-1000 microM induced DNA damage in human lymphocytes, measured as the change in comet tail moment, which increased with nickel concentration up to 500 microM and then decreased. Observed increase might follow from the induction of strand breaks or/and alkali-labile sites (ALS) by nickel, whereas decrease from its induction of DNA-DNA and/or DNA-protein cross-links. Proteinase K caused an increase in the tail moment, suggesting that nickel chloride at 1000 microM might cross-link DNA with nuclear proteins. Lymphocytes exposed to NiCl(2) and treated with enzymes recognizing oxidized and alkylated bases: endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), displayed greater extent of DNA damage than those not treated with these enzymes, indicating the induction of oxidized and alkylated bases by nickel. The incubation of lymphocytes with spin traps, 5,5-dimethyl-pyrroline N-oxide (DMPO) and PBN decreased the extent of DNA damage, which might follow from the production of free radicals by nickel. The pre-treatment with Vitamin C at 10 microM and Vitamin E at 25 microM decreased the tail moment of the cells exposed to NiCl(2) at the concentrations of the metal causing strand breaks or/and ALS. The results obtained suggest that free radicals may be involved in the formation of strand breaks or/and ALS in DNA as well as DNA-protein cross-links induced by NiCl(2). Nickel chloride can also alkylate DNA bases. Our results support thesis on multiple, free radicals-based genotoxicity pathways of nickel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号