首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1570篇
  免费   182篇
  1752篇
  2022年   12篇
  2021年   19篇
  2020年   13篇
  2019年   13篇
  2018年   19篇
  2017年   24篇
  2016年   29篇
  2015年   71篇
  2014年   41篇
  2013年   75篇
  2012年   87篇
  2011年   96篇
  2010年   62篇
  2009年   45篇
  2008年   77篇
  2007年   68篇
  2006年   72篇
  2005年   63篇
  2004年   59篇
  2003年   64篇
  2002年   79篇
  2001年   54篇
  2000年   62篇
  1999年   60篇
  1998年   34篇
  1997年   32篇
  1996年   19篇
  1995年   28篇
  1994年   26篇
  1993年   27篇
  1992年   32篇
  1991年   39篇
  1990年   29篇
  1989年   18篇
  1988年   22篇
  1987年   11篇
  1986年   12篇
  1985年   25篇
  1984年   9篇
  1983年   7篇
  1982年   7篇
  1979年   11篇
  1978年   11篇
  1977年   7篇
  1976年   8篇
  1975年   10篇
  1974年   7篇
  1973年   9篇
  1971年   7篇
  1968年   6篇
排序方式: 共有1752条查询结果,搜索用时 15 毫秒
991.
Nomikou M  Janssen A  Sabelis MW 《Oecologia》2003,136(3):484-488
Evidence is accumulating that herbivorous arthropods do not simply select host plants based on their quality, but also on the predation risk associated with different host plants. It has been suggested that herbivores exclude plant species with high predation risk from their host range. This assumes a constant, predictable predation risk as well as a rather static behaviour on the part of the herbivore; plants are ignored irrespective of the actual predation risk. We show that adult females of a small herbivore, the whitefly Bemisia tabaci, can learn to avoid plants with predatory mites that attack only juvenile whiteflies, while they accept host plants of the same species without predators. Predatory mites disperse more slowly than whiteflies; they cannot fly and walk from plant to plant. Hence, by avoiding plants with predators, the whiteflies create a temporary refuge for their offspring. We suggest that the experience of arthropod herbivores with risks associated with host plants plays an important role in their host plant selection.  相似文献   
992.
The green micro-algae Chlamydomonas reinhardtiiand Dunaliella tertiolecta were cultivated undermedium-duration square-wave light/dark cycles with acycle time of 15 s. These cycles were used to simulatethe light regime experienced by micro-algae inexternally-illuminated (sunlight) air-lift loopbioreactors with internal draft tube. Biomass yieldin relation to light energy was determined as gprotein per mol of photons (400–700 nm). Between 600and 1200 mol m-2 s-1 the yield at a10/5 s light/dark cycle was equal to the yield atcontinuous illumination. Consequently, provided thatthe liquid circulation time is 15 s, a considerabledark zone seems to be allowed in the interior ofair-lift loop photobioreactors (33% v/v) without lossof light utilization efficiency. However, at a 5/10 slight/dark cycle, corresponding to a 67% v/v darkzone, biomass yield decreased. Furthermore, bothalgae, C. reinhardtii and D. tertiolecta,responded similarly to these cycles with respect tobiomass yield. This was interesting because they werereported to exhibit a different photoacclimationstrategy. Finally, it was demonstrated that D.tertiolecta was much more efficient at low (average)photon flux densities (57–370 mol m-2s-1) than at high PFDs (> 600 mol m-2s-1) and it was shown that D. tertiolectawas cultivated at a sub-optimal temperature (20 °C).  相似文献   
993.
Dwinell, M. R., P. L. Janssen, J. Pizarro, and G. E. Bisgard. Effects of carotid body hypocapnia during ventilatory acclimatization to hypoxia. J. Appl.Physiol. 82(1): 118-124, 1997.Hypoxicventilatory sensitivity is increased during ventilatory acclimatizationto hypoxia (VAH) in awake goats, resulting in a time-dependent increasein expired ventilation (E). Theobjectives of this study were to determine whether the increasedcarotid body (CB) hypoxic sensitivity is dependent on the level of CB CO2 and whether the CBCO2 gain is changed during VAH.Studies were carried out in adult goats with CB blood gases controlled by an extracorporeal circuit while systemic (central nervous system) blood gases were regulated independently by the level of inhaled gases. Acute E responsesto CB hypoxia (CB PO2 40 Torr) and CBhypercapnia (CB PCO2 50 and 60 Torr)were measured while systemic normoxia and isocapnia were maintained. CBPO2 was then lowered to 40 Torr for 4 h while the systemic blood gases were kept normoxic and normocapnic.During the 4-h CB hypoxia, E increasedin a time-dependent manner. Thirty minutes after return to normoxia,the ventilatory response to CB hypoxia was significantly increasedcompared with the initial response. The slope of the CBCO2 response was also elevatedafter VAH. An additional group of goats(n = 7) was studied with asimilar protocol, except that CB PCO2was lowered throughout the 4-h hypoxic exposure to prevent reflexhyperventilation. CB PCO2 wasprogressively lowered throughout the 4-h CB hypoxic period to maintainE at the control level. After the 4-hCB hypoxic exposure, the ventilatory response to hypoxia was alsosignificantly elevated. However, the slope of the CBCO2 response was not elevatedafter the 4-h hypoxic exposure. These results suggest that CBsensitivity to both O2 andCO2 is increased after 4 h of CBhypoxia with systemic isocapnia. The increase in CB hypoxic sensitivityis not dependent on the level of CBCO2 maintained during the 4-hhypoxic period.

  相似文献   
994.
The hypothesis tested was whether marginal iodine deficiency for a period of 6 wk affects iodothyronine deiodinase activities in liver and brain of rats. Male rats were fed purified diets either deficient or sufficient in iodine; the diets were fed on a restricted basis (60% ofad libitum intake). Body weight gain of the two groups was comparable. Iodine deficiency was evidenced by increased thyroid weight (26%), reduced urinary iodine excretion (80%), and reduced plasma T4 concentrations (22%). Activities of liver type I and brain type III deiodinase were unchanged, but the activity of type II deiodinase in brain was increased (28%) in the iodine-deficient rats. Food restrictionper se significantly lowered T3 (30%) and T4 (22%) concentrations in plasma and decreased type III deiodinase activity in brain (30%). These results indicate that in marginal iodine deficiency the activities of hepatic type I deiodinase and brain type III deiodinase are unchanged, whereas that of brain type II deiodinase is increased.  相似文献   
995.
The main bottleneck in scale-up of phototrophic fermentation is the low efficiency of light energy conversion to the desired product, which is caused by an excessive dissipation of light energy to heat. The photoheterotrophic formation of hydrogen from acetate and light energy by the microorganism Rhodobacter capsulatus NCIMB 11773 was chosen as a case study in this work. A light energy balance was set up, in which the total bacterial light energy absorption is split up and attributed to its destinations. These are biomass growth and maintenance, generation of hydrogen and photosynthetic heat dissipation. The constants defined in the light energy balance were determined experimentally using a flat-panel photobioreactor with a 3-cm optical path. An experimental method called D-stat was applied. Continuous cultures were kept in a so-called pseudo steady state, while the dilution rate was reduced slowly and smoothly. The biomass yield and maintenance coefficients of Rhodobacter capsulatus biomass on light energy were determined at 12.4 W/m(2) (400-950 nm) and amounted to 2.58 x 10(-8) +/- 0.04 x 10(-8) kg/J and 102 +/- 3.5 W/kg, respectively. The fraction of the absorbed light energy that was dissipated to heat at 473 W/m(2) depended on the biomass concentration in the reactor and varied between 0.80 and 0.88, as the biomass concentration was increased from 2.0 to 8.0 kg/m(3). The process conditions were estimated at which a 3.7% conversion efficiency of absorbed light energy to produced hydrogen energy should be attainable at 473 W/m(2).  相似文献   
996.
Adult ladybirds are likely to encounter various species of prey when foraging for oviposition sites. Optimal oviposition theory predicts that females should lay eggs in those sites that are the most suitable for offspring development. Therefore, factors that directly affect offspring mortality, such as the presence of predators and food, are expected to play an important role in the assessment of patch profitability by ladybird predators. Using a Y‐tube olfactometer, we tested whether the predatory ladybird Cycloneda sanguinea L. (Coleoptera: Coccinellidae) can use volatile cues to assess patch profitability and avoid predator‐rich patches. We assessed the foraging behaviour of C. sanguinea in response to odours associated with tomato plants infested with a superior prey, Macrosiphum euphorbiae Thomas (Homoptera: Aphididae), and with an inferior prey, Tetranychus evansi Baker and Pritchard (Acari: Tetranychidae), in the presence or absence of the heterospecific predator Eriopis connexa Mulsant (Coleoptera: Coccinellidae). Females of C. sanguinea significantly preferred plants infested by M. euphorbiae to plants infested by T. evansi and avoided odours emanating from plants on which E. connexa females were present. Our results show that C. sanguinea use volatile cues to assess patch profitability and to avoid patches with heterospecific competitors or intraguild predators.  相似文献   
997.
Degradation of trichloroethylene (TCE) by the methanotrophic bacterium Methylosinus trichosporium OB3b was studied by using cells grown in continuous culture. TCE degradation was a strictly cometabolic process, requiring the presence of a cosubstrate, preferably formate, and oxygen. M. trichosporium OB3b cells degraded TCE only when grown under copper limitation and when the soluble methane monooxygenase was derepressed. During TCE degradation, nearly total dechlorination occurred, as indicated by the production of inorganic chloride, and only traces of 2,2,2-trichloroethanol and trichloroacetaldehyde were produced. TCE degradation proceeded according to first-order kinetics from 0.1 to 0.0002 mM TCE with a rate constant of 2.14 ml min-1 mg of cells-1. TCE concentrations above 0.2 mM inhibited degradation in cell suspensions of 0.42 mg of cells ml-1. Other chlorinated aliphatics were also degraded by M. trichosporium OB3b. Dichloromethane, chloroform, 1,1-dichloroethane, and 1,2-dichloroethane were completely degraded, with the release of stoichiometric amounts of chloride. trans-1,2-Dichloroethylene, cis-1,2-dichloroethylene, and 1,2-dichloropropane were completely converted, but not all the chloride was released because of the formation of chlorinated intermediates, e.g., trans-2,3-dichlorooxirane, cis-2,3-dichlorooxirane, and 2,3-dichloropropanol, respectively. 1,1,1-Trichloroethane, 1,1-dichloroethylene, and 1,3-dichloropropylene were incompletely converted, and the first compound yielded 2,2,2-trichloroethanol as a chlorinated intermediate. The two perchlorinated compounds tested, carbon tetrachloride and tetrachloroethylene, were not converted.  相似文献   
998.
999.
1000.
The potent greenhouse gas methane (CH4) is produced in the rumens of ruminant animals from hydrogen produced during microbial degradation of ingested feed. The natural animal-to-animal variation in the amount of CH4 emitted and the heritability of this trait offer a means for reducing CH4 emissions by selecting low-CH4 emitting animals for breeding. We demonstrate that differences in rumen microbial community structure are linked to high and low CH4 emissions in sheep. Bacterial community structures in 236 rumen samples from 118 high- and low-CH4 emitting sheep formed gradual transitions between three ruminotypes. Two of these (Q and S) were linked to significantly lower CH4 yields (14.4 and 13.6 g CH4/kg dry matter intake [DMI], respectively) than the third type (H; 15.9 g CH4/kg DMI; p<0.001). Low-CH4 ruminotype Q was associated with a significantly lower ruminal acetate to propionate ratio (3.7±0.4) than S (4.4±0.7; p<0.001) and H (4.3±0.5; p<0.001), and harbored high relative abundances of the propionate-producing Quinella ovalis. Low-CH4 ruminotype S was characterized by lactate- and succinate-producing Fibrobacter spp., Kandleria vitulina, Olsenella spp., Prevotella bryantii, and Sharpea azabuensis. High-CH4 ruminotype H had higher relative abundances of species belonging to Ruminococcus, other Ruminococcaceae, Lachnospiraceae, Catabacteriaceae, Coprococcus, other Clostridiales, Prevotella, other Bacteroidales, and Alphaproteobacteria, many of which are known to form significant amounts of hydrogen. We hypothesize that lower CH4 yields are the result of bacterial communities that ferment ingested feed to relatively less hydrogen, which results in less CH4 being formed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号