首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2037篇
  免费   195篇
  2023年   15篇
  2022年   14篇
  2021年   39篇
  2020年   36篇
  2019年   28篇
  2018年   27篇
  2017年   33篇
  2016年   53篇
  2015年   86篇
  2014年   93篇
  2013年   103篇
  2012年   126篇
  2011年   89篇
  2010年   53篇
  2009年   65篇
  2008年   82篇
  2007年   94篇
  2006年   105篇
  2005年   75篇
  2004年   90篇
  2003年   74篇
  2002年   74篇
  2001年   52篇
  2000年   58篇
  1999年   51篇
  1998年   20篇
  1997年   15篇
  1996年   26篇
  1995年   28篇
  1994年   18篇
  1993年   28篇
  1992年   35篇
  1991年   42篇
  1990年   39篇
  1989年   29篇
  1988年   20篇
  1987年   25篇
  1986年   27篇
  1985年   35篇
  1984年   26篇
  1983年   21篇
  1982年   14篇
  1981年   13篇
  1980年   12篇
  1979年   13篇
  1974年   10篇
  1973年   14篇
  1972年   15篇
  1969年   12篇
  1967年   9篇
排序方式: 共有2232条查询结果,搜索用时 15 毫秒
101.
Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore‐induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up‐regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.  相似文献   
102.
During chronic kidney disease (CKD), drug metabolism is affected leading to changes in drug disposition. Furthermore, there is a progressive accumulation of uremic retention solutes due to impaired renal clearance. Here, we investigated whether uremic toxins can influence the metabolic functionality of human conditionally immortalized renal proximal tubule epithelial cells (ciPTEC) with the focus on UDP-glucuronosyltransferases (UGTs) and mitochondrial activity. Our results showed that ciPTEC express a wide variety of metabolic enzymes, including UGTs. These enzymes were functionally active as demonstrated by the glucuronidation of 7-hydroxycoumarin (7-OHC; Km of 12 ± 2 μM and a Vmax of 76 ± 3 pmol/min/mg) and p-cresol (Km of 33 ± 13 μM and a Vmax of 266 ± 25 pmol/min/mg). Furthermore, a wide variety of uremic toxins, including indole-3-acetic acid, indoxyl sulfate, phenylacetic acid and kynurenic acid, reduced 7-OHC glucuronidation with more than 30% as compared with controls (p < 0.05), whereas UGT1A and UGT2B protein expressions remained unaltered. In addition, our results showed that several uremic toxins inhibited mitochondrial succinate dehydrogenase (i.e. complex II) activity with more than 20% as compared with controls (p < 0.05). Moreover, indole-3-acetic acid decreased the reserve capacity of the electron transport system with 18% (p < 0.03). In conclusion, this study shows that multiple uremic toxins inhibit UGT activity and mitochondrial activity in ciPTEC, thereby affecting the metabolic capacity of the kidney during CKD. This may have a significant impact on drug and uremic retention solute disposition in CKD patients.  相似文献   
103.

Background

Ventilator–induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar–capillary barrier dysfunction in an established murine model of VILI.

Methods

Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O (“lower” tidal volumes of ∼7.5 ml/kg; LVT) or 18 cmH2O (“higher” tidal volumes of ∼15 ml/kg; HVT). Dexamethasone was intravenously administered at the initiation of HVT–ventilation. Non–ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios.

Results

Particularly HVT–ventilation led to alveolar–capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro–inflammatory response in lungs of HVT–ventilated mice, without improving alveolar–capillary permeability, gas exchange and pulmonary edema formation.

Conclusions

Dexamethasone treatment completely abolishes ventilator–induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar–capillary barrier dysfunction in an established murine model of VILI.  相似文献   
104.
105.

Background

Electroencephalogram (EEG) acquisition is routinely performed to support an epileptic origin of paroxysmal events in patients referred with a possible diagnosis of epilepsy. However, in children with partial epilepsies the interictal EEGs are often normal. We aimed to develop a multivariable diagnostic prediction model based on electroencephalogram functional network characteristics.

Methodology/Principal Findings

Routinely performed interictal EEG recordings at first presentation of 35 children diagnosed with partial epilepsies, and of 35 children in whom the diagnosis epilepsy was excluded (control group), were used to develop the prediction model. Children with partial epilepsy were individually matched on age and gender with children from the control group. Periods of resting-state EEG, free of abnormal slowing or epileptiform activity, were selected to construct functional networks of correlated activity. We calculated multiple network characteristics previously used in functional network epilepsy studies and used these measures to build a robust, decision tree based, prediction model. Based on epileptiform EEG activity only, EEG results supported the diagnosis of with a sensitivity and specificity of 0.77 and 0.91 respectively. In contrast, the prediction model had a sensitivity of 0.96 [95% confidence interval: 0.78–1.00] and specificity of 0.95 [95% confidence interval: 0.76–1.00] in correctly differentiating patients from controls. The overall discriminative power, quantified as the area under the receiver operating characteristic curve, was 0.89, defined as an excellent model performance. The need of a multivariable network analysis to improve diagnostic accuracy was emphasized by the lack of discriminatory power using single network characteristics or EEG''s power spectral density.

Conclusions/Significance

Diagnostic accuracy in children with partial epilepsy is substantially improved with a model combining functional network characteristics derived from multi-channel electroencephalogram recordings. Early and accurate diagnosis is important to start necessary treatment as soon as possible and inform patients and parents on possible risks and psychosocial aspects in relation to the diagnosis.  相似文献   
106.
The Greater Limpopo Transfrontier Conservation Area (GLTFCA) is one of the last refuges for the endangered African wild dog and hosts roughly one-tenth of the global population. Wild dogs in this area are currently threatened by human encroachment, habitat fragmentation and scarcity of suitable connecting habitat between protected areas. We derived genetic data from mitochondrial and nuclear markers to test the following hypotheses: (i) demographic declines in wild dogs have caused a loss of genetic variation, and (ii) Zimbabwean and South African populations in the GLTFCA have diverged due to the effects of isolation and genetic drift. Genetic patterns among five populations, taken with comparisons to known information, illustrate that allelic richness and heterozygosity have been lost over time, presumably due to effects of inbreeding and genetic drift. Genetic structuring has occurred due to low dispersal rates, which was most apparent between Kruger National Park and the Zimbabwean Lowveld. Immediate strategies to improve gene flow should focus on increasing the quality of habitat corridors between reserves in the GLTFCA and securing higher wild dog survival rates in unprotected areas, with human-mediated translocation only undertaken as a last resort.  相似文献   
107.
108.
The evolution of drug resistant parasitic sea lice is of major concern to the salmon farming industry worldwide and challenges sustainable growth of this enterprise. To assess current status and development of L. salmonis sensitivity towards different pesticides used for parasite control in Norwegian salmon farming, a national surveillance programme was implemented in 2013. The programme aims to summarize data on the use of different pesticides applied to control L. salmonis and to test L. salmonis sensitivity to different pesticides in farms along the Norwegian coast. Here we analyse two years of test-data from biological assays designed to detect sensitivity-levels towards the pesticides azamethiphos and deltamethrin, both among the most common pesticides used in bath-treatments of farmed salmon in Norway in later years. The focus of the analysis is on how different variables predict the binomial outcome of the bioassay tests, being whether L. salmonis are immobilized/die or survive pesticide exposure. We found that local kernel densities of bath treatments, along with a spatial geographic index of test-farm locations, were significant predictors of the binomial outcome of the tests. Furthermore, the probability of L. salmonis being immobilized/dead after test-exposure was reduced by odds-ratios of 0.60 (95% CI: 0.42–0.86) for 2014 compared to 2013 and 0.39 (95% CI: 0.36–0.42) for low concentration compared to high concentration exposure. There were also significant but more marginal effects of parasite gender and developmental stage, and a relatively large random effect of test-farm. We conclude that the present data support an association between local intensities of bath treatments along the coast and the outcome of bioassay tests where salmon lice are exposed to azamethiphos or deltamethrin. Furthermore, there is a predictable structure of L. salmonis phenotypes along the coast in the data, characterized by high susceptibility to pesticides in the far north and far south, but low susceptibility in mid Norway. The study emphasizes the need to address local susceptibility to pesticides and the need for restrictive use of pesticides to preserve treatment efficacy.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号