首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   5篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2008年   6篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
41.
The protein melanoma inhibitory activity (MIA) is known to be expressed in melanoma and to support melanoma progression. Interestingly, previous studies also observed the expression of MIA in nevi. Concentrating on these findings, we revealed that MIA expression is correlated with a senescent state in melanocytes. Induction of replicative or oncogene‐induced senescence resulted in increased MIA expression in vitro. Notably, MIA knockdown in senescent melanocytes reduced the percentage of senescence‐associated beta‐Gal‐positive cells and enhanced proliferation. Using the melanoma mouse model Tg(Grm1), MIA‐deficient mice supported the impact of MIA on senescence by showing a significantly earlier tumor onset compared to controls. In melanocytes, MIA knockdown led to a downregulation of the cell cycle inhibitor p21 in vitro and in vivo. In contrast, after induction of hTERT in human melanoma cells, p21 regulation by MIA was lost. In summary, our data show for the first time that MIA is a regulator of cellular senescence in human and murine melanocytes.  相似文献   
42.
The genome of bacteriophage P1 harbors a gene coding for a 162-amino-acid protein which shows 66% amino acid sequence identity to the Escherichia coli single-stranded DNA-binding protein (SSB). The expression of the P1 gene is tightly regulated by P1 immunity proteins. It is completely repressed during lysogenic growth and only weakly expressed during lytic growth, as assayed by an ssb-P1/lacZ fusion construct. When cloned on an intermediate-copy-number plasmid, the P1 gene is able to suppress the temperature-sensitive defect of an E. coli ssb mutant, indicating that the two proteins are functionally interchangeable. Many bacteriophages and conjugative plasmids do not rely on the SSB protein provided by their host organism but code for their own SSB proteins. However, the close relationship between SSB-P1 and the SSB protein of the P1 host, E. coli, raises questions about the functional significance of the phage protein.  相似文献   
43.
44.
The identification and conservation of indigenous rhizobia associated with legume plants and their application as biofertilizers is becoming an agricultural worldwide priority. However, little is known about the genetic diversity and phylogeny of rhizobia in Romania. In the present study, the genetic diversity and population composition of Rhizobium leguminosarum symbiovar trifolii isolates from 12 clover plants populations located across two regions in Romania were analyzed. Red clover isolates were phenotypically evaluated and genotyped by sequencing 16S rRNA gene, 16S-23S intergenic spacer, three chromosomal genes (atpD, glnII and recA) and two plasmid genes (nifH and nodA). Multilocus sequence typing (MLST) analysis revealed that red clover plants are nodulated by a wide genetic diversity of R. leguminosarum symbiovar trifolii sequence types (STs), highly similar to the ones previously found in white clover. Rhizobial genetic variation was found mainly within the two clover populations for both chromosomal and plasmid types. Many STs appear to be unique for this region and the genetic composition of rhizobia differs significantly among the clover populations. Furthermore, our results showed that both soil pH and altitude contributed to plasmid sequence type composition while differences in chromosomal composition were affected by the altitude and were strongly correlated with distance.  相似文献   
45.

Purpose

We investigate how the boundary between product systems and their environment has been delineated in life cycle assessment and question the usefulness and ontological relevance of a strict division between the two.

Methods

We consider flows, activities and impacts as general terms applicable to both product systems and their environment and propose that the ontologically relevant boundary is between the flows that are modelled as inputs to other activities (economic or environmental)—and the flows that—in a specific study—are regarded as final impacts, in the sense that no further feedback into the product system is considered before these impacts are applied in decision-making. Using this conceptual model, we contrast the traditional mathematical calculation of the life cycle impacts with a new, simpler computational structure where the life cycle impacts are calculated directly as part of the Leontief inverse, treating product flows and environmental flows in parallel, without the need to consider any boundary between economic and environmental activities.

Results and discussion

Our theoretical outline and the numerical example demonstrate that the distinctions and boundaries between product systems and their environment are unnecessary and in some cases obstructive from the perspective of impact assessment, and can therefore be ignored or chosen freely to reflect meaningful distinctions of specific life cycle assessment (LCA) studies. We show that our proposed computational structure is backwards compatible with the current practice of LCA modelling, while allowing inclusion of feedback loops both from the environment to the economy and internally between different impact categories in the impact assessment.

Conclusions

Our proposed computational structure for LCA facilitates consistent, explicit and transparent modelling of the feedback loops between environment and the economy and between different environmental mechanisms. The explicit and transparent modelling, combining economic and environmental information in a common computational structure, facilitates data exchange and re-use between different academic fields.
  相似文献   
46.
Prediction of twin-arginine signal peptides   总被引:1,自引:0,他引:1  

Background  

Proteins carrying twin-arginine (Tat) signal peptides are exported into the periplasmic compartment or extracellular environment independently of the classical Sec-dependent translocation pathway. To complement other methods for classical signal peptide prediction we here present a publicly available method, TatP, for prediction of bacterial Tat signal peptides.  相似文献   
47.
The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1–6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1–6 HCVcc. Epitope mapping identified a cluster of overlapping epitopes that included nine contact residues in two E2 regions encompassing aa418–446 and aa611–616. Effect on virus entry was measured using H77C HCV retroviral pseudoparticles, HCVpp, bearing an alanine substitution at each of the contact residues. Seven of ten mutant HCVpp showed over 90% reduction compared to wild-type HCVpp and two others showed approximately 80% reduction. Interestingly, four of these antibodies bound to a linear E2 synthetic peptide encompassing aa434–446. This region on E2 has been proposed to elicit non-neutralizing antibodies in humans that interfere with neutralizing antibodies directed at an adjacent E2 region from aa410–425. The isolation of four HC-84 HMAbs binding to the peptide, aa434–446, proves that some antibodies to this region are to highly conserved epitopes mediating broad virus neutralization. Indeed, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus.  相似文献   
48.
Hepatitis C virus (HCV) chronically infects 70 million people worldwide with an estimated annual disease-related mortality of 400,000. A vaccine could prevent spread of this pervasive human pathogen, but has proven difficult to develop, partly due to neutralizing antibody evasion mechanisms that are inherent features of the virus envelope glycoproteins, E1 and E2. A central actor is the E2 motif, hypervariable region 1 (HVR1), which protects several non-overlapping neutralization epitopes through an incompletely understood mechanism. Here, we show that introducing different HVR1-isolate sequences into cell-culture infectious JFH1-based H77 (genotype 1a) and J4 (genotype 1b) Core-NS2 recombinants can lead to severe viral attenuation. Culture adaptation of attenuated HVR1-swapped recombinants permitted us to identify E1/E2 substitutions at conserved positions both within and outside HVR1 that increased the infectivity of attenuated HVR1-swapped recombinants but were not adaptive for original recombinants. H77 recombinants with HVR1 from multiple other isolates consistently acquired substitutions at position 348 in E1 and position 385 in HVR1 of E2. Interestingly, HVR1-swapped J4 recombinants primarily acquired other substitutions: F291I (E1), F438V (E2), F447L/V/I (E2) and V710L (E2), indicating a different adaptation pathway. For H77 recombinants, the adaptive E1/E2 substitutions increased sensitivity to the neutralizing monoclonal antibodies AR3A and AR4A, whereas for J4 recombinants, they increased sensitivity to AR3A, while having no effect on sensitivity to AR4A. To evaluate effects of the substitutions on AR3A and AR4A binding, we performed ELISAs on extracted E1/E2 protein and performed immunoprecipitation of relevant viruses. However, extracted E1/E2 protein and immunoprecipitation of HCV particles only reproduced the neutralization phenotypes of the J4 recombinants. Finally, we found that the HVR1-swap E1/E2 substitutions decrease virus entry dependency on co-receptor SR-BI. Our study identifies E1/E2 positions that could be critical for intra-complex HVR1 interactions while emphasizing the need for developing novel tools for molecular studies of E1/E2 interactions.  相似文献   
49.
Hypervariable region 1 (HVR1) of envelope protein 2 (E2) of hepatitis C virus (HCV) serves important yet undefined roles in the viral life cycle. We previously showed that the viability of HVR1-deleted JFH1-based recombinants with Core-NS2 of H77 (H77ΔHVR1, genotype 1a) and S52 (S52ΔHVR1, genotype 3a) in Huh7.5 cells was rescued by E2 substitutions N476D/S733F and an E1 substitution, A369V, respectively; HVR1-deleted J6 (J6ΔHVR1, genotype 2a) was fully viable. In single-cycle production assays, where HCV RNA was transfected into entry-deficient Huh7-derived S29 cells with low CD81 expression, we found no effect of HVR1 deletion on replication or particle release for H77 and S52. HCV pseudoparticle assays in Huh7.5 cells showed that HVR1 deletion decreased entry by 20- to 100-fold for H77, J6, and S52; N476D/S733F restored entry for H77ΔHVR1, while A369V further impaired S52ΔHVR1 entry. We investigated receptor usage by antibody blocking and receptor silencing in Huh7.5 cells, followed by inoculation of parental and HVR1-deleted HCV recombinants. Compared to parental viruses, scavenger receptor class B type I (SR-BI) dependency was decreased for H77ΔHVR1/N476D/S733F, H77N476D/S733F, S52ΔHVR1/A369V, and S52A369V, but not for J6ΔHVR1. Low-density lipoprotein receptor (LDLr) dependency was decreased for HVR1-deleted viruses, but not for H77N476D/S733F and S52A369V. Soluble LDLr neutralization revealed strong inhibition of parental HCV but limited effect against HVR1-deleted viruses. Apolipoprotein E (ApoE)-specific HCV neutralization was similar for H77, J6, and S52 viruses with and without HVR1. In conclusion, HVR1 and HVR1-related adaptive envelope mutations appeared to be involved in LDLr and SR-BI dependency, respectively. Also, LDLr served ApoE-independent but HVR1-dependent functions in HCV entry.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号