首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   25篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   6篇
  2019年   4篇
  2018年   8篇
  2017年   5篇
  2016年   8篇
  2015年   31篇
  2014年   19篇
  2013年   18篇
  2012年   22篇
  2011年   32篇
  2010年   9篇
  2009年   8篇
  2008年   14篇
  2007年   9篇
  2006年   10篇
  2005年   13篇
  2004年   9篇
  2003年   13篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
  1964年   1篇
  1963年   2篇
排序方式: 共有298条查询结果,搜索用时 109 毫秒
21.
The hypothalamo-neurohypophyseal system (HNS) is?the neurovascular structure through which the hypothalamic neuropeptides oxytocin and arginine-vasopressin exit the brain into the bloodstream, where they go on to affect peripheral physiology. Here, we investigate the molecular cues that regulate the neurovascular contact between hypothalamic axons and neurohypophyseal capillaries of the zebrafish. We developed a transgenic system in which both hypothalamic axons and neurohypophyseal vasculature can be analyzed in?vivo. We identified the cellular organization of the zebrafish HNS as well as the dynamic processes that contribute to formation of the HNS neurovascular interface. We show that formation of this interface is regulated during development by local release of oxytocin, which affects endothelial morphogenesis. This cell communication process is essential for the establishment of a tight axovasal interface between the neurons and blood vessels of the HNS. We present a unique example of axons affecting endothelial morphogenesis through secretion of a neuropeptide.  相似文献   
22.
Clinical efficacy of the antiplatelet drug clopidogrel is hampered by its variable biotransformation into the active metabolite. The variability in the clinical response to clopidogrel treatment has been attributed to genetic factors, but the specific genes and mechanisms underlying clopidogrel bioactivation remain unclear. Using in vitro metabolomic profiling techniques, we identified paraoxonase-1 (PON1) as the crucial enzyme for clopidogrel bioactivation, with its common Q192R polymorphism determining the rate of active metabolite formation. We tested the clinical relevance of the PON1 Q192R genotype in a population of individuals with coronary artery disease who underwent stent implantation and received clopidogrel therapy. PON1 QQ192 homozygous individuals showed a considerably higher risk than RR192 homozygous individuals of stent thrombosis, lower PON1 plasma activity, lower plasma concentrations of active metabolite and lower platelet inhibition. Thus, we identified PON1 as a key factor for the bioactivation and clinical activity of clopidogrel. These findings have therapeutic implications and may be exploited to prospectively assess the clinical efficacy of clopidogrel.  相似文献   
23.
High tumor tissue mRNA expression of the tumor biological factors uPAR, uPAR-del4/5, or rab31 is associated with shorter distant metastasis-free and overall survival in breast cancer patients. To evaluate whether these factors are also clinically relevant in ovarian cancer, we quantified the respective mRNA levels in primary tumor tissue of advanced ovarian cancer patients (n=103) and evaluated their association with clinicopathological parameters and patients' prognosis. mRNA expression levels of all three markers did not show any significant association with overall or progression-free survival, demonstrating that these factors have no prognostic value in advanced ovarian cancer.  相似文献   
24.
25.
26.
27.
The Bateson–Dobzhansky–Muller model predicts that postzygotic isolation evolves due to the accumulation of incompatible epistatic interactions, but few studies have quantified the relationship between genetic architecture and patterns of reproductive divergence. We examined how the direction and magnitude of epistatic interactions in a polygenic trait under stabilizing selection influenced the evolution of hybrid incompatibilities. We found that populations evolving independently under stabilizing selection experienced suites of compensatory allelic changes that resulted in genetic divergence between populations despite the maintenance of a stable, high‐fitness phenotype. A small number of loci were then incompatible with multiple alleles in the genetic background of the hybrid and the identity of these incompatibility loci changed over the evolution of the populations. For F1 hybrids, reduced fitness evolved in a window of intermediate strengths of epistatic interactions, but F2 and backcross hybrids evolved reduced fitness across weak and moderate strengths of epistasis due to segregation variance. Strong epistatic interactions constrained the allelic divergence of parental populations and prevented the development of reproductive isolation. Because many traits with varying genetic architectures must be under stabilizing selection, our results indicate that polygenetic drift is a plausible hypothesis for the evolution of postzygotic reproductive isolation.  相似文献   
28.
The Cys-loop pentameric ligand-gated ion channel receptors: 50 years on   总被引:1,自引:0,他引:1  
This year, 2011, the Department of Pharmacology at the University of Alberta celebrated its 50th anniversary. This timeframe covers nearly the entire history of Cys-loop pentameric ligand-gated ion channel (pLGIC) research. In this review we consider how major technological advancements affected our current understanding of pLGICs, and highlight the contributions made by members of our department. The individual at the center of our story is Susan Dunn; her passing earlier this year has robbed the Department of Pharmacology and the research community of a most insightful colleague. Her dissection of ligand interactions with the nAChR, together with their interpretation, was the hallmark of her extensive collaborations with Michael Raftery. Here, we highlight some electrophysiological studies from her laboratory over the last few years, using the technique that she introduced to the department in Edmonton, the 2-electrode voltage-clamp of Xenopus oocytes. Finally, we discuss some single-channel studies of the anionic GlyR and GABA(A)R that prefaced the introduction of this technique to her laboratory.  相似文献   
29.
A potentially powerful predictor for the course of drug (ab)use is the approach-bias, that is, the pre-reflective tendency to approach rather than avoid drug-related stimuli. Here we investigated the neural underpinnings of cannabis approach and avoidance tendencies. By elucidating the predictive power of neural approach-bias activations for future cannabis use and problem severity, we aimed at identifying new intervention targets. Using functional Magnetic Resonance Imaging (fMRI), neural approach-bias activations were measured with a Stimulus Response Compatibility task (SRC) and compared between 33 heavy cannabis users and 36 matched controls. In addition, associations were examined between approach-bias activations and cannabis use and problem severity at baseline and at six-month follow-up. Approach-bias activations did not differ between heavy cannabis users and controls. However, within the group of heavy cannabis users, a positive relation was observed between total lifetime cannabis use and approach-bias activations in various fronto-limbic areas. Moreover, approach-bias activations in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) independently predicted cannabis problem severity after six months over and beyond session-induced subjective measures of craving. Higher DLPFC/ACC activity during cannabis approach trials, but lower activity during cannabis avoidance trials were associated with decreases in cannabis problem severity. These findings suggest that cannabis users with deficient control over cannabis action tendencies are more likely to develop cannabis related problems. Moreover, the balance between cannabis approach and avoidance responses in the DLPFC and ACC may help identify individuals at-risk for cannabis use disorders and may be new targets for prevention and treatment.  相似文献   
30.

Background  

The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号