首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2318篇
  免费   108篇
  国内免费   4篇
  2430篇
  2023年   21篇
  2022年   35篇
  2021年   71篇
  2020年   46篇
  2019年   53篇
  2018年   86篇
  2017年   58篇
  2016年   69篇
  2015年   101篇
  2014年   128篇
  2013年   177篇
  2012年   176篇
  2011年   158篇
  2010年   104篇
  2009年   101篇
  2008年   99篇
  2007年   87篇
  2006年   87篇
  2005年   70篇
  2004年   62篇
  2003年   57篇
  2002年   62篇
  2001年   49篇
  2000年   43篇
  1999年   36篇
  1998年   12篇
  1997年   7篇
  1996年   16篇
  1995年   9篇
  1994年   12篇
  1993年   6篇
  1992年   21篇
  1991年   22篇
  1990年   16篇
  1989年   27篇
  1988年   24篇
  1987年   23篇
  1986年   17篇
  1985年   18篇
  1984年   21篇
  1983年   8篇
  1982年   15篇
  1981年   8篇
  1980年   10篇
  1979年   19篇
  1978年   12篇
  1977年   13篇
  1976年   9篇
  1975年   7篇
  1970年   5篇
排序方式: 共有2430条查询结果,搜索用时 15 毫秒
101.
An economical and efficient one step synthesis of a series of 8-(arylidene)-4-(aryl)-5,6,7,8-tetrahydro-quinazolin-2-ylamines and 9-(arylidene)-4-(aryl)-6,7,8,9-tetrahydro-5H-cycloheptapyrimidin-2-ylamines by the reaction of bis-benzylidene cycloalkanones and guanidine hydrochloride in presence of NaH has been developed. All the synthesized compounds were evaluated against Mycobacterium tuberculosis H37Rv strain and the α-glucosidase and glycogen phosphorylase enzymes. Few of the compounds have shown interesting in vitro activity with MIC up to 3.12 μg/mL against M. tuberculosis and very good inhibition of α-glucosidase and glycogen phosphorylase enzymes. The most potent non toxic compound 40 exhibited about 58% ex vivo activity at MIC of 3.12 μg/mL. The present study opens a new gate to synthesize antitubercular agents for diabetic TB patients. In silico docking studies indicate that mycobacterial dihydrofolate reductase is the possible target of these compounds.  相似文献   
102.
The Zika virus is a rapidly spreading Aedes mosquito‐borne sickness, which creates an unanticipated linkage birth deformity and neurological turmoil. This study represents the use of the combinatorial immunoinformatics approach to develop a multiepitope subunit vaccine using the structural and nonstructural proteins of the Zika virus. The designed subunit vaccine consists of cytotoxic T‐lymphocyte and helper T‐lymphocyte epitopes accompanied by suitable adjuvant and linkers. The presence of humoral immune response specific B‐cell epitopes was also confirmed by B‐cell epitope mapping among vaccine protein. Further, the vaccine protein was characterized for its allergenicity, antigenicity, and physiochemical parameters and found to be safe and immunogenic. Molecular docking and molecular dynamics studies of the vaccine protein with the toll‐like receptor‐3 were performed to ensure the binding affinity and stability of their complex. Finally, in silico cloning was performed for the effective expression of vaccine construct in the microbial system (Escherichia coli K12 strain). Aforementioned approaches result in the multiepitope subunit vaccine which may have the ability to induce cellular as well as humoral immune response. Moreover, this study needs the experimental validation to prove the immunogenic and protective behavior of the developed subunit vaccine.  相似文献   
103.
Bone loss or osteoporosis, is a slow-progressing disease that results from dysregulation of pro-inflammatory cytokines. The FDA has approved number of drugs for bone loss prevention, nonetheless all are expensive and have multiple side effects. The nutraceuticals identified from dietary agents such as butein, cardamonin, coronarin D curcumin, diosgenin, embelin, gambogic acid, genistein, plumbagin, quercetin, reseveratrol, zerumbone and more, can modulate cell signaling pathways and reverse/slow down osteoporosis. Most of these nutraceuticals are inexpensive; show no side effect while still possessing anti-inflammatory properties. This review provides various mechanisms of osteoporosis and how nutraceuticals can potentially prevent the bone loss.  相似文献   
104.
An effort was made in the present study to identify the main effect and epistatic quantitative trait locus (QTL) for the morphological and yield-related traits in peanut. A recombinant inbred line (RIL) population derived from TAG 24 × GPBD 4 was phenotyped in seven environments at two locations. QTL analysis with available genetic map identified 62 main-effect QTLs (M-QTLs) for ten morphological and yield-related traits with the phenotypic variance explained (PVE) of 3.84–15.06%. Six major QTLs (PVE >?10%) were detected for PLHT, PPP, YPP, and SLNG. Stable M-QTLs appearing in at least two environments were detected for PLHT, LLN, YPP, YKGH, and HSW. Five M-QTLs governed two traits each, and 16 genomic regions showed co-localization of two to four M-QTLs. Intriguingly, a major QTL reported to be linked to rust resistance showed pleiotropic effect for yield-attributing traits like YPP (15.06%, PVE) and SLNG (13.40%, PVE). Of the 24 epistatic interactions identified across the traits, five interactions involved six M-QTLs. Three interactions were additive × additive and remaining two involved QTL × environment (QE) interactions. Only one major M-QTL governing PLHT showed epistatic interaction. Overall, this study identified the major M-QTLs for the important productivity traits and also described the lack of epistatic interactions for majority of them so that they can be conveniently employed in peanut breeding.  相似文献   
105.
The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The ‘DNA barcodes’ show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more.  相似文献   
106.
The effects of synthetic atrial natriuretic factor (ANF) on the regulation of mouse Leydig cell steroidogenesis have been studied in vitro. ANF in nanomolar concentration increased testosterone production by more than 30-fold over basal levels. Concomitantly, cyclic guanosine monophosphate levels were increased 35-fold; cyclic adenosine monophosphate levels fell minimally (15-20%). ANF at low concentration (1 X 10(-11) M) inhibited testosterone production by luteinizing hormone-stimulated cells, while at higher concentration (greater than 2 X 10(-9) M) ANF stimulated steroidogenesis beyond the level attained by luteinizing hormone alone. These results indicate that ANF can exert stimulatory effects on testosterone steroidogenesis in vitro, and that the mechanism may involve an intracellular messenger other than cyclic adenosine monophosphate.  相似文献   
107.
Endoplasmic reticulum (ER) dysfunction plays a prominent role in the pathophysiology of diabetic nephropathy (DN). This study aimed to investigate the novel role of Naringenin (a flavanone mainly found in citrus fruits) in modulating ER stress in hyperglycemic NRK 52E cells and STZ/nicotinamide induced diabetes in Wistar rats. The results demonstrated that Naringenin supplementation downregulated the expression of ER stress marker proteins, including p-PERK, p-eIF2α, XBP1s, ATF4 and CHOP during hyperglycemic renal toxicity in vitro and in vivo. Naringenin abrogated hyperglycemia-induced ultrastructural changes in ER, evidencing its anti-ER stress effects. Interestingly, treatment of Naringenin prevented nuclear translocation of ATF4 and CHOP in hyperglycemic renal cells and diabetic kidneys. Naringenin prevented apoptosis in hyperglycemic renal cells and diabetic kidney tissues by downregulating expression of apoptotic marker proteins. Further, photomicrographs of TEM confirmed anti-apoptotic potential of Naringenin as it prevented membrane blebbing and formation of apoptotic bodies in hyperglycemic renal cells. Naringenin improved glucose tolerance, restored serum insulin level and reduced serum glucose level in diabetic rats evidencing its anti-hyperglycemic effects. Histopathological examination of kidney tissues also confirmed prevention of damage after 28 days of Naringenin treatment in diabetic rats. Additionally, Naringenin diminished oxidative stress and improved antioxidant defense response during hyperglycemic renal toxicity. Taken together, our study revealed a novel role of Naringenin in ameliorating ER stress during hyperglycemic renal toxicity along with prevention of apoptosis, cellular and tissue damage. The findings suggest that prevention of ER stress can be exploited as a novel approach for the management of hyperglycemic nephrotoxicity. Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00644-0.  相似文献   
108.
In a given environment, plants are constantly exposed to multitudes of stimuli. These stimuli are sensed and transduced to generate a diverse array of responses by several signal transduction pathways. Calcium (Ca2+) signaling is one such important pathway involved in transducing a large number of stimuli or signals in both animals and plants. Ca2+ engages a plethora of decoders to mediate signaling in plants. Among these groups of decoders, the sensor responder complex of calcineurin B‐like protein (CBL) and CBL‐interacting protein kinases (CIPKs) play a very significant role in transducing these signals. The signal transduction mechanism in most cases is phosphorylation events, but some structural role for the pair has also come to light recently. In this review, we discuss the structural nature of the sensor‐responder duo; their mechanism of substrate phosphorylation and also their structural role in modulating targets. Moreover, the mechanism of complex formation and mechanistic role of protein phosphatases with CBL–CIPK module has been mentioned. A comparison of CBL–CIPK with other decoders of Ca2+ signaling in plants also signifies the relatedness and diversity in signaling pathways. Further an attempt has been made to compare this aspect of Ca2+ signaling pathways in different plant species to develop a holistic understanding of conservation of stimulus–response‐coupling mediated by this Ca2+–CBL–CIPK module.  相似文献   
109.
Four antagonists bacteria namely, Bacillus megaterium MB3, B. subtilis MB14, B. subtilis MB99 and B. amyloliquefaciens MB101 were able to produce chitinase, β-1,3-glucanase and protease in different range with the presence of Rhizoctonia solani cell wall as a carbon source. Amplification of chitinase (chiA) gene of 270 bp and β-1, 3-glucanase gene of 415 bp was given supportive evidence at molecular level of antibiosis. After in vitro screening, all antagonists were tested against R. solani under greenhouse conditions. Root treatment of Bacillus strains showed superior defense during pathogen suppression in terms of chitinase, glucanase, peroxidase, poly phenol oxidase, phenylalanine ammonia-lyase activity and total phenolic content in leaves of tomato. All these enzymes accumulated high in tomato leaves as compared to roots. Pathogenesis-related proteins and defense-related enzymes accumulation was directly correlated with plant protection and greenhouse results indicated that B. amyloliquefaciens MB101- and B. subtilis MB14-treated plants offered 69.76 and 61.51 % disease reductions, respectively, over the infected control. These results established that these organisms have the potential to act as biocontrol agents. This study could be highlighted a mutual importance of liquid formulation of antagonistic Bacillus spp. against root associated sclerotia former pathogen R. solani.  相似文献   
110.
A series of twenty two derivatives of 3-(1-alkyl/aminoalkyl-3-vinyl-piperidin-4-yl)-1-(quinolin-4-yl)-propan-1-one and their 2-methylene derivatives were synthesized from naturally abundant cinchonine (I). Tartarate salts of these compounds were prepared and evaluated for spermicidal activity. The most active compounds (24, 27, 34, 36, and 38) showing potent spermicidal activity were further evaluated against different strains of Trichomonas vaginalis, for antimicrobial activity, in HeLa cell lines for cytotoxicity and against Lactobacillus jensenii for eco-safety. The tartarate of 3-(1-pentyl-3-vinyl-piperidin-4-yl)-1-(quinolin-4-yl)-propan-1-one (27) was found to be more active than N-9 in spermicidal activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号