首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   11篇
  211篇
  2023年   4篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2019年   6篇
  2018年   9篇
  2017年   5篇
  2016年   6篇
  2015年   10篇
  2014年   11篇
  2013年   15篇
  2012年   18篇
  2011年   19篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   7篇
  1998年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有211条查询结果,搜索用时 0 毫秒
11.
Twenty-four putative lipase/esterase genes of Mycobacterium tuberculosis H37Rv were expressed in Escherichia coli and assayed for long-chain triacylglycerol (TG) hydrolase activity. We show here that the product of Rv3097c (LIPY) hydrolyzed long-chain TG with high specific activity. LIPY was purified after solubilization from inclusion bodies; the enzyme displayed a K(m) of 7.57 mM and V(max) of 653.3 nmol/mg/min for triolein with optimal activity between pH 8.0 and pH 9.0. LIPY was inhibited by active serine-directed reagents and was inactivated at temperatures above 37 degrees C. Detergents above their critical micellar concentrations and divalent cations inhibited the activity of LIPY. The N-terminal half of LIPY showed sequence homology with the proline glutamic acid-polymorphic GC-rich repetitive sequences protein family of M. tuberculosis. The C-terminal half of LIPY possesses amino acid domains homologous with the hormone-sensitive lipase family and the conserved active-site motif GDSAG. LIPY shows low sequence identity with the annotated lipases of M. tuberculosis and with other bacterial lipases. We demonstrate that hypoxic cultures of M. tuberculosis, which had accumulated TG, hydrolyzed the stored TG when subjected to nutrient starvation. Under such conditions, lipY was induced more than all lipases, suggesting a central role for it in the utilization of stored TG. We also show that in the lipY-deficient mutant, TG utilization was drastically decreased under nutrient-deprived condition. Thus, LIPY may be responsible for the utilization of stored TG during dormancy and reactivation of the pathogen.  相似文献   
12.
Multiple endonuclease digestion of template DNA or amplification products can increase significantly the detection of polymorphic DNA in fingerprints generated by multiple arbitrary amplicon profiling (MAAP). This coupling of endonuclease cleavage and amplification of arbitrary stretches of DNA, directed by short oligonucleotide primers, readily allowed distinction of closely related fungal and bacterial isolates and plant cultivars. MAAP analysis of cleaved template DNA enabled the identification of molecular markers linked to a developmental locus of soybean (Glycine max L. Merrill). Ethyl methane sulfonate (EMS)-induced supernodulating, near-isogenic lines altered in the nts locus, which controls nodule formation, could be distinguished from each other and from the parent cultivar by amplification of template pre-digested with 2–3 restriction enzymes. A total of 42 DNA polymorphisms were detected using only 19 octamer primers. In the absence of digestion, 25 primers failed to differentiate these soybean genotypes. Several polymorphic products co-segregated tightly with the nts locus in F2 families from crosses between the allelic mutants nts382 and nts1007 and the ancestral G. soja Sieb. & Succ. PI468.397. Our results suggest that EMS is capable of inducing extensive DNA alterations, probably around discrete mutational hot-spots. EMS-induced DNA polymorphisms may constitute sequence-tagged markers diagnostic of specific genomic regions.  相似文献   
13.
The tight junction, or zonula occludens, is a specialized cell-cell junction that regulates epithelial and endothelial permeability, and it is an essential component of the blood-brain barrier in the cerebrovascular endothelium. In addition to functioning as a diffusion barrier, tight junctions are also involved in signal transduction. In this study, we identified a homozygous mutation in the tight-junction protein gene JAM3 in a large consanguineous family from the United Arab Emirates. Some members of this family had a rare autosomal-recessive syndrome characterized by severe hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Their clinical presentation overlaps with some reported cases of pseudo-TORCH syndrome as well as with cases involving mutations in occludin, another component of the tight-junction complex. However, massive intracranial hemorrhage distinguishes these patients from others. Homozygosity mapping identified the disease locus in this family on chromosome 11q25 with a maximum multipoint LOD score of 6.15. Sequence analysis of genes in the candidate interval uncovered a mutation in the canonical splice-donor site of intron 5 of JAM3. RT-PCR analysis of a patient lymphoblast cell line confirmed abnormal splicing, leading to a frameshift mutation with early termination. JAM3 is known to be present in vascular endothelium, although its roles in cerebral vasculature have not been implicated. Our results suggest that JAM3 is essential for maintaining the integrity of the cerebrovascular endothelium as well as for normal lens development in humans.  相似文献   
14.
INTRODUCTION: Glucose transporter 1 (Glut-1) is a facilitative glucose transporter expressed in many cancers including breast cancer. Basal-like breast cancer (BLBC) is a high-risk disease associated with poor prognosis and lacks the benefit of targeted therapy. The aim of this study was to characterize the immunohistochemical (IHC) expression of Glut-1 in patients with BLBC compared with non-BLBC. MATERIALS AND METHODS: We identified 523 cases of invasive breast carcinoma from our database. The clinicopathologic findings and the biologic markers including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her2) status were reviewed. IHC stains for cytokeratin 5/6 (CK5/6), epidermal growth factor receptor (EGFR), p53, and Glut-1 were performed on tissue microarray using standard procedures. BLBC was defined as ER-,PR-, Her2-, and CK5/6+ and/or EGFR+. RESULTS: Of informative cases, 14.7% were categorized as BLBC versus 85.3% as non-BLBC. Glut-1 was expressed in 42 (76.4%) of 55 BLBCs, whereas only 55 (23.8%) of 231 non-BLBCs showed immunostaining for Glut-1 (P < .001). Overall, Glut-1 expression was significantly associated with high histologic grade, ER negativity, PR negativity, CK5/6 positivity, EGFR expression, and high p53 expression (P < .001). However, there was no correlation between Glut-1 immunostaining and patient's outcome. CONCLUSIONS: Our results show that Glut-1 is significantly associated with BLBC and might be a potential therapeutic target for this aggressive subgroup of breast cancer, and this warrants further investigations.  相似文献   
15.
ROR2 is a member of the cell surface receptor tyrosine kinase (RTKs) family of proteins and is involved in the developmental morphogenesis of the skeletal, cardiovascular and genital systems. Mutations in ROR2 have been shown to cause two distinct human disorders, autosomal recessive Robinow syndrome and dominantly inherited Brachydactyly type B. The recessive form of Robinow syndrome is a disorder caused by loss-of-function mutations whereas Brachydactyly type B is a dominant disease and is presumably caused by gain-of-function mutations in the same gene. We have previously established that all the missense mutations causing Robinow syndrome in ROR2 are retained in the endoplasmic reticulum and therefore concluded that their loss of function is due to a defect in their intracellular trafficking. These mutations were in the distal portion of the frizzled-like cysteine rich domain and kringle domain. Here we report the identification of two novel mutations in the frizzled-like cysteine-rich domain of ROR2 causing Robinow syndrome. We establish the retention of the mutated proteins in the endoplasmic reticulum of HeLa cells and therefore failure to reach the plasma membrane. The clustering of Robinow-causing mutations in the extracellular frizzled-like cysteine-rich domain of ROR2 suggests a stringent requirement for the correct folding of this domain prior to export of ROR2 from the endoplasmic reticulum to the plasma membrane. GenBank accession number ROR2, M97639.  相似文献   
16.
In this study, the promoter activity for three types of Euonymus-related lectins (EUL) from rice, further referred to as OrysaEULS2, OrysaEULS3, and OrysaEULD1A was analyzed. In silico promoter analyses showed that the EUL promoters from rice contain next to the typical promoter elements some motifs that are considered to be stress-responsive elements. Furthermore, Arabidopsis thaliana plants were transformed with a promoter::β-glucuronidase (GUS) construct for each of the proteins under study. Subsequently, one-insertion homozygous lines were selected and analyzed for GUS activity. Experiments were performed under normal growth conditions or after application of different stress conditions, in particular treatments with 150 mM NaCl, 100 mM mannitol, and 100 μM abscisic acid (ABA) for 24 h. GUS activity was detected with the OrysaEULS3 and OrysaEULD1A promoters especially in the cotyledons and the young true leaves, respectively, but not with the OrysaEULS2 promoter. The activity of OrysaEULS3 and OrysaEULD1A promoters was increased after ABA and mannitol treatments but decreased after NaCl treatment. We hypothesize that the Euonymus-related rice proteins have a role in sensing and responding to external stresses as well as in the growth of the plant.  相似文献   
17.
Excess superoxide (O(2)(-)) and nitric oxide (NO) forms peroxynitrite (ONOO(-)) during cardiac ischemia reperfusion (IR) injury, which in turn induces protein tyrosine nitration (tyr-N). Mitochondria are both a source of and target for ONOO(-). Our aim was to identify specific mitochondrial proteins that display enhanced tyr-N after cardiac IR injury, and to explore whether inhibiting O(2)(-)/ONOO(-) during IR decreases mitochondrial protein tyr-N and consequently improves cardiac function. We show here that IR increased tyr-N of 35 and 15kDa mitochondrial proteins using Western blot analysis with 3-nitrotyrosine antibody. Immunoprecipitation (IP) followed by LC-MS/MS identified 13 protein candidates for tyr-N. IP and Western blot identified and confirmed that the 35kDa tyr-N protein is the voltage-dependent anion channel (VDAC). Tyr-N of native cardiac VDAC with IR was verified on recombinant (r) VDAC with exogenous ONOO(-). We also found that ONOO(-) directly enhanced rVDAC channel activity, and rVDAC tyr-N induced by ONOO(-) formed oligomers. Resveratrol (RES), a scavenger of O(2)(-)/ONOO(-), reduced the tyr-N levels of both native and recombinant VDAC, while L-NAME, which inhibits NO generation, only reduced tyr-N levels of native VDAC. O(2)(-) and ONOO(-) levels were reduced in perfused hearts during IR by RES and L-NAME and this was accompanied by improved cardiac function. These results identify tyr-N of VDAC and show that reducing ONOO(-) during cardiac IR injury can attenuate tyr-N of VDAC and improve cardiac function.  相似文献   
18.
19.
20.
Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterised by vascular dysplasia and increased bleeding that affect 1 in 5,000 people world-wide. Pathology is linked to mutations in genes encoding components of the heteromeric transforming growth factor-beta receptor (TGF-beta) and SMAD signalling pathway. Indeed HHT1 and HHT2 result from mutations in the genes encoding endoglin and activin-like kinase 1 (ALK1), TGF-beta receptor components. However, the fundamental cellular defects underlying HHT is poorly understood. Previously using confocal microscopy and N-glycosylation analysis, we found evidence that defective trafficking of endoglin from the endoplasmic reticulum (ER) to the plasma membrane is a mechanism underlying HHT1 in some patients. In this study, we used confocal microscopy to investigate whether a similar mechanism contributes to HHT2 pathology. To do this we expressed wild-type ALK1 and a number of HHT2 patient mutant variants as C-terminally tagged EGFP fusion proteins and tested their localisation in HeLa cells. We found that wild-type ALK1–EGFP was targeted predominantly to the plasma membrane, as evidenced by its colocalisation with the co-expressed HA-tagged endoglin. However, we found that in the majority of cases analysed the HHT2 patient mutant protein was retained within the ER as indicated by their colocalisation with the ER resident marker (calnexin) and lack of colocalisation with cell surface associated HA-endoglin. We conclude that defective trafficking and retention in the ER of mutant ALK1 protein is a possible mechanism of HHT2 in some patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号