首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2591篇
  免费   345篇
  2936篇
  2022年   30篇
  2021年   62篇
  2020年   27篇
  2019年   36篇
  2018年   37篇
  2017年   38篇
  2016年   78篇
  2015年   139篇
  2014年   133篇
  2013年   132篇
  2012年   207篇
  2011年   164篇
  2010年   91篇
  2009年   117篇
  2008年   116篇
  2007年   105篇
  2006年   99篇
  2005年   120篇
  2004年   107篇
  2003年   90篇
  2002年   83篇
  2001年   45篇
  2000年   39篇
  1999年   46篇
  1998年   33篇
  1997年   29篇
  1996年   25篇
  1995年   25篇
  1994年   29篇
  1993年   29篇
  1992年   39篇
  1991年   39篇
  1990年   32篇
  1989年   32篇
  1988年   26篇
  1987年   35篇
  1986年   24篇
  1985年   23篇
  1984年   28篇
  1983年   23篇
  1982年   18篇
  1981年   13篇
  1979年   22篇
  1978年   16篇
  1974年   12篇
  1973年   15篇
  1972年   21篇
  1970年   12篇
  1969年   13篇
  1967年   13篇
排序方式: 共有2936条查询结果,搜索用时 15 毫秒
51.
The etiologic paradigm of complex human disorders such as autism is that genetic and environmental risk factors are independent and additive, but the interactive effects at the epigenetic interface are largely ignored. Genomic technologies have radically changed perspective on the human genome and how the epigenetic interface may impact complex human disorders. Here, I review recent genomic, environmental and epigenetic findings that suggest a new paradigm of “integrative genomics” in which genetic variation in genomic size may be impacted by dietary and environmental factors that influence the genomic saturation of DNA methylation. Human genomes are highly repetitive, but the interface of large-scale genomic differences with environmental factors that alter the DNA methylome such as dietary folate is under-explored. In addition to obvious direct effects of some environmental toxins on the genome by causing chromosomal breaks, non-mutagenic toxin exposures correlate with DNA hypomethylation that can lead to rearrangements between repeats or increased retrotransposition. Since human neurodevelopment appears to be particularly sensitive to alterations in epigenetic pathways, a further focus will be on how developing neurons may be particularly impacted by even subtle alterations to DNA methylation and proposing new directions towards understanding the quixotic etiology of autism by integrative genomic approaches.Key words: DNA methylation, copy number variation, autism, neurodevelopment, genomics, epigenomics, epigenetics, folate, folic acid, environmental exposures, Alu, MeCP2, LINE-1  相似文献   
52.
Growth factor deprivation-induced apoptosis plays an important role in several cellular systems. However, knowledge of the molecular mechanisms involved are restricted to a few murine models or tumor cell lines. Therefore, we aimed studying signaling pathways leading to apoptosis in activated human peripheral T cells after IL-2 withdrawal. Lymphoblasts from patients with CD 95 (Fas/APO-1)-deficiency revealed that functional CD95 was not required to induce apoptosis after IL-2 withdrawal. Moreover, apoptosis induction in response to various cytotoxic stimuli was found to be mediated in the absence of functional CD95 but was affirmatorily influenced by IL-2 signaling. Immunoblots showed no downregulation of Bcl-2 or Bcl-xL and no upregulation of Bax, whereas decreased mitochondrial membrane potential was readily measurable 24 h after cytokine deprivation. Tetrapeptide inhibitors showed limited efficacy in preventing apoptosis whereas the caspase inhibitor zVAD-FMK potently blocked induction of apoptosis. Cleavage of different fluorogenic substrates revealed multiple caspase enzyme activities in lymphoblasts, which were not negatively affected by the fas mutation. Starting at 8 h after IL-2 withdrawal, upregulation of active caspase-3 but not of caspase-8 could be detected. Taken together, our data argue for molecular mechanisms of cytokine deprivation-induced apoptosis in activated human lymphocytes independent of CD95.  相似文献   
53.
Gram-negative bacteria harboring KPC-2, a class A β-lactamase, are resistant to all β-lactam antibiotics and pose a major public health threat. Arg-164 is a conserved residue in all class A β-lactamases and is located in the solvent-exposed Ω-loop of KPC-2. To probe the role of this amino acid in KPC-2, we performed site-saturation mutagenesis. When compared with wild type, 11 of 19 variants at position Arg-164 in KPC-2 conferred increased resistance to the oxyimino-cephalosporin, ceftazidime (minimum inhibitory concentration; 32→128 mg/liter) when expressed in Escherichia coli. Using the R164S variant of KPC-2 as a representative β-lactamase for more detailed analysis, we observed only a modest 25% increase in k(cat)/K(m) for ceftazidime (0.015→0.019 μm(-1) s(-1)). Employing pre-steady-state kinetics and mass spectrometry, we determined that acylation is rate-limiting for ceftazidime hydrolysis by KPC-2, whereas deacylation is rate-limiting in the R164S variant, leading to accumulation of acyl-enzyme at steady-state. CD spectroscopy revealed that a conformational change occurred in the turnover of ceftazidime by KPC-2, but not the R164S variant, providing evidence for a different form of the enzyme at steady state. Molecular models constructed to explain these findings suggest that ceftazidime adopts a unique conformation, despite preservation of Ω-loop structure. We propose that the R164S substitution in KPC-2 enhances ceftazidime resistance by proceeding through "covalent trapping" of the substrate by a deacylation impaired enzyme with a lower K(m). Future antibiotic design must consider the distinctive behavior of the Ω-loop of KPC-2.  相似文献   
54.
[FeFe]-hydrogenases are superior hydrogen conversion catalysts. They bind a cofactor (H-cluster) comprising a four-iron and a diiron unit with three carbon monoxide (CO) and two cyanide (CN?) ligands. Hydrogen (H2) and oxygen (O2) binding at the H-cluster was studied in the C169A variant of [FeFe]-hydrogenase HYDA1, in comparison to the active oxidized (Hox) and CO-inhibited (Hox-CO) species in wildtype enzyme. 57Fe labeling of the diiron site was achieved by in vitro maturation with a synthetic cofactor analogue. Site-selective X-ray absorption, emission, and nuclear inelastic/forward scattering methods and infrared spectroscopy were combined with quantum chemical calculations to determine the molecular and electronic structure and vibrational dynamics of detected cofactor species. Hox reveals an apical vacancy at Fed in a [4Fe4S-2Fe]3 ? complex with the net spin on Fed whereas Hox-CO shows an apical CN? at Fed in a [4Fe4S-2Fe(CO)]3 ? complex with net spin sharing among Fep and Fed (proximal or distal iron ions in [2Fe]). At ambient O2 pressure, a novel H-cluster species (Hox-O2) accumulated in C169A, assigned to a [4Fe4S-2Fe(O2)]3 ? complex with an apical superoxide (O2?) carrying the net spin bound at Fed. H2 exposure populated the two-electron reduced Hhyd species in C169A, assigned as a [(H)4Fe4S-2Fe(H)]3 ? complex with the net spin on the reduced cubane, an apical hydride at Fed, and a proton at a cysteine ligand. Hox-O2 and Hhyd are stabilized by impaired O2 protonation or proton release after H2 cleavage due to interruption of the proton path towards and out of the active site.  相似文献   
55.
56.
Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.  相似文献   
57.
The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group.  相似文献   
58.
Species distributional or trait data based on range map (extent‐of‐occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species’ distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method's implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing spatial autocorrelation in the errors. However, we found that for presence/absence data the results and conclusions were very variable between the different methods. This is likely due to the low information content of binary maps. Also, in contrast with previous studies, we found that autocovariate methods consistently underestimated the effects of environmental controls of species distributions. Given their widespread use, in particular for the modelling of species presence/absence data (e.g. climate envelope models), we argue that this warrants further study and caution in their use. To aid other ecologists in making use of the methods described, code to implement them in freely available software is provided in an electronic appendix.  相似文献   
59.
Cdc25B protein phosphatase represents an attractive potential therapeutic target for small molecule intervention because of its central role in positively regulating cyclin dependent kinases and thus cell proliferation, as well as its elevated levels observed in many human tumors. Among the most potent previously identified Cdc25 inhibitors have been quinoline quinones, which have a rich legacy as therapeutic agents but have also been associated with nonspecific interactions. In this study, we have interrogated the structure-activity relationship of a focused series of C2-, C3-, or C4-modified quinoline-5,8-quinones on Cdc25B inhibition in vitro. Substitution at the C3-position in this small chemical series were slightly superior to substitutions at the C3-position. For all compounds, recombinant human Cdc25B was approximately 5-fold more sensitive compared to recombinant human PTP1B. Two compounds inhibited HeLa cell growth with IC50 values of approximately 2 microM. Consistent with other para-quinones, some members of this series generated intracellular reactive oxygen species and the in vitro enzyme inhibition was mitigated by addition of reductants or catalase. These results indicate that chemical modifications on the pyridine core are tolerated, providing additional sites for future structural modification of this biologically active pharmacophore.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号