首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1209篇
  免费   107篇
  2023年   6篇
  2022年   14篇
  2021年   32篇
  2020年   11篇
  2019年   25篇
  2018年   23篇
  2017年   19篇
  2016年   51篇
  2015年   99篇
  2014年   85篇
  2013年   79篇
  2012年   112篇
  2011年   93篇
  2010年   42篇
  2009年   57篇
  2008年   67篇
  2007年   53篇
  2006年   66篇
  2005年   62篇
  2004年   50篇
  2003年   50篇
  2002年   41篇
  2001年   13篇
  2000年   2篇
  1999年   14篇
  1998年   8篇
  1997年   11篇
  1996年   12篇
  1995年   6篇
  1994年   8篇
  1993年   10篇
  1992年   14篇
  1991年   4篇
  1990年   8篇
  1988年   3篇
  1987年   8篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1977年   4篇
  1974年   2篇
  1972年   4篇
  1970年   2篇
  1959年   3篇
  1955年   1篇
  1954年   1篇
  1949年   1篇
排序方式: 共有1316条查询结果,搜索用时 250 毫秒
151.
Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii mouse infection models to address this question. We found that after infection, NK cells accumulated in the subcapsular region of the lymph node, where they formed low-motility contacts with collagen fibers and CD169(+) macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169(+) macrophages increase the activation state of NK cells. Interestingly, a subset of CD169(+) macrophages that coexpress the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated after infection and identify an important accessory cell population for activation of NK cell responses in lymph nodes.  相似文献   
152.
153.

Background

Excess gestational weight gain (GWG) is an important risk factor for long term obesity in women. However, current interventions aimed at preventing excess GWG appear to have a limited effect. Several studies have highlighted the importance of linking theory with empirical evidence for producing effective interventions for behaviour change. Theorists have demonstrated that goals can be an important source of human motivation and goal setting has shown promise in promoting diet and physical activity behaviour change within non-pregnant individuals. The use of goal setting as a behaviour change strategy has been systematically evaluated within overweight and obese individuals, yet its use within pregnancy has not yet been systematically explored.

Aim of review

To explore the use of goal setting within healthy lifestyle interventions for the prevention of excess GWG.

Data collection and analysis

Searches were conducted in seven databases alongside hand searching of relevant journals and citation tracking. Studies were included if interventions used goal setting alongside modification of diet and/or physical activity with an aim to prevent excess GWG. The PRISMA guidelines were followed and a two-stage methodological approach was used. Stage one focused on systematically evaluating the methodological quality of included interventions. The second stage assessed intervention integrity and the implementation of key goal setting components.

Findings

From a total of 839 citations, 54 full-text articles were assessed for eligibility and 5 studies met the inclusion criteria. Among interventions reporting positive results a combination of individualised diet and physical activity goals, self-monitoring and performance feedback indicators were described as active components.

Conclusion

Interventions based on goal setting appear to be useful for helping women achieve optimal weight gain during pregnancy. However, overweight and obese women may require more theoretically-designed interventions. Further high quality, theoretically-designed interventions are required to determine the most effective and replicable components for optimal GWG.  相似文献   
154.
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, motor neuron disease with no effective long-term treatment options. Recently, TDP-43 has been identified as a key protein in the pathogenesis of some cases of ALS. Although the role of TDP-43 in motor neuron degeneration is not yet known, TDP-43 has been shown to accumulate in RNA stress granules (SGs) in cell models and in spinal cord tissue from ALS patients. The SG association may be an early pathological change to TDP-43 metabolism and as such a potential target for therapeutic intervention. Accumulation of TDP-43 in SGs induced by inhibition of mitochondrial activity can be inhibited by modulation of cellular kinase activity. We have also found that treatment of cells and animal models of neurodegeneration, including an ALS model, with bioavailable bis(thiosemicarbazonato)copper(II) complexes (Cu(II)(btsc)s) can modulate kinase activity and induce neuroprotective effects. In this study we examined the effect of diacetylbis(-methylthiosemicarbazonato)copper(II) (Cu(II)(atsm)) and glyoxalbis(-methylthiosemicarbazonato)copper(II) (Cu(II)(gtsm)) on TDP-43-positive SGs induced in SH-SY5Y cells in culture. We found that the Cu(II)(btsc)s blocked formation of TDP-43-and human antigen R (HuR)-positive SGs induced by paraquat. The Cu(II)(btsc)s protected neurons from paraquat-mediated cell death. These effects were associated with inhibition of ERK phosphorylation. Co-treatment of cultures with either Cu(II)(atsm) or an ERK inhibitor, PD98059 both prevented ERK activation and blocked formation of TDP-43-and HuR-positive SGs. Cu(II)(atsm) treatment or ERK inhibition also prevented abnormal ubiquitin accumulation in paraquat-treated cells suggesting a link between prolonged ERK activation and abnormal ubiquitin metabolism in paraquat stress and inhibition by Cu. Moreover, Cu(II)(atsm) reduced accumulation of C-terminal (219-414) TDP-43 in transfected SH-SY5Y cells. These results demonstrate that Cu(II)(btsc) complexes could potentially be developed as a neuroprotective agent to modulate neuronal kinase function and inhibit TDP-43 aggregation. Further studies in TDP-43 animal models are warranted.  相似文献   
155.
156.
Photo-crosslinkable, fumaric acid monoethyl ester-functionalized triblock oligomers are synthesized and copolymerized with N-vinyl-2-pyrrolidone to form biodegradable photo-crosslinked hydrogels. Poly(ethylene glycol) is used as the middle hydrophilic segment and the hydrophobic segments are based on D,L-lactide, trimethylene carbonate or a mixture of these monomers. Two model proteins, lysozyme and albumin, are incorporated in the hydrogels and their release is studied. The composition of the hydrophobic segments could be used to tune degradation behavior and release rates. Careful optimization of photo-polymerization conditions is needed to limit conjugation of proteins to the hydrogels and protein denaturation.  相似文献   
157.
Recently, EDI3 was identified as a key factor for choline metabolism that controls tumor cell migration and is associated with metastasis in endometrial carcinomas. EDI3 cleaves glycerophosphocholine (GPC) to form choline and glycerol-3-phosphate (G3P). Choline is then further metabolized to phosphatidylcholine (PtdC), the major lipid in membranes and a key player in membrane-mediated cell signaling. The second product, G3P, is a precursor molecule for several lipids with central roles in signaling, for example lysophosphatidic acid (LPA), phosphatidic acid (PA) and diacylglycerol (DAG). LPA activates intracellular signaling pathways by binding to specific LPA receptors, including membrane-bound G protein-coupled receptors and the intracellular nuclear receptor, PPARγ. Conversely, PA and DAG mediate signaling by acting as lipid anchors that bind and activate several signaling proteins. For example, binding of GTPases and PKC to PA and DAG, respectively, increases the activation of signaling networks, mediating processes such as migration, adhesion, proliferation or anti-apoptosis—all relevant for tumor development. We present a concept by which EDI3 either directly generates signaling molecules or provides “membrane anchors” for downstream signaling factors. As a result, EDI3 links choline metabolism to signaling activities resulting in a more malignant phenotype.  相似文献   
158.
The tumor necrosis factor-receptor-associated factor 2 (TRAF2)- and Nck-interacting kinase (TNIK) is a ubiquitously expressed member of the germinal center kinase family. The TNIK functions in hematopoietic cells and the role of TNIK-TRAF interaction remain largely unknown. By functional proteomics we identified TNIK as interaction partner of the latent membrane protein 1 (LMP1) signalosome in primary human B-cells infected with the Epstein-Barr tumor virus (EBV). RNAi-mediated knockdown proved a critical role for TNIK in canonical NF-κB and c-Jun N-terminal kinase (JNK) activation by the major EBV oncoprotein LMP1 and its cellular counterpart, the B-cell co-stimulatory receptor CD40. Accordingly, TNIK is mandatory for proliferation and survival of EBV-transformed B-cells. TNIK forms an activation-induced complex with the critical signaling mediators TRAF6, TAK1/TAB2, and IKKβ, and mediates signalosome formation at LMP1. TNIK directly binds TRAF6, which bridges TNIK's interaction with the C-terminus of LMP1. Separate TNIK domains are involved in NF-κB and JNK signaling, the N-terminal TNIK kinase domain being essential for IKKβ/NF-κB and the C-terminus for JNK activation. We therefore suggest that TNIK orchestrates the bifurcation of both pathways at the level of the TRAF6-TAK1/TAB2-IKK complex. Our data establish TNIK as a novel key player in TRAF6-dependent JNK and NF-κB signaling and a transducer of activating and transforming signals in human B-cells.  相似文献   
159.
Traditional methods for Chagas disease prevention are targeted at domestic vector reduction, as well as control of transfusion and maternal-fetal transmission. Population connectivity of Trypanosoma cruzi-infected vectors and hosts, among sylvatic, ecotone and domestic habitats could jeopardize targeted efforts to reduce human exposure. This connectivity was evaluated in a Mexican community with reports of high vector infestation, human infection, and Chagas disease, surrounded by agricultural and natural areas. We surveyed bats, rodents, and triatomines in dry and rainy seasons in three adjacent habitats (domestic, ecotone, sylvatic), and measured T. cruzi prevalence, and host feeding sources of triatomines. Of 12 bat and 7 rodent species, no bat tested positive for T. cruzi, but all rodent species tested positive in at least one season or habitat. Highest T. cruzi infection prevalence was found in the rodents, Baiomys musculus and Neotoma mexicana. In general, parasite prevalence was not related to habitat or season, although the sylvatic habitat had higher infection prevalence than by chance, during the dry season. Wild and domestic mammals were identified as bloodmeals of T. pallidipennis, with 9% of individuals having mixed human (4.8% single human) and other mammal species in bloodmeals, especially in the dry season; these vectors tested >50% positive for T. cruzi. Overall, ecological connectivity is broad across this matrix, based on high rodent community similarity, vector and T. cruzi presence. Cost-effective T. cruzi, vector control strategies and Chagas disease transmission prevention will need to consider continuous potential for parasite movement over the entire landscape. This study provides clear evidence that these strategies will need to include reservoir/host species in at least ecotones, in addition to domestic habitats.  相似文献   
160.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species that originated in China and has been introduced to Hawaii and the U.S. mainland. Colonies are headed either by a pair of reproductives (simple families) or by varying numbers of inbreeding reproductives (extended families), and therefore have variable degrees of inbreeding. Worker size also varies among colonies of Formosan termites. We tested whether variation in worker size can be explained by the breeding system. Workers were collected from colonies from three geographically separated populations (China, Hawaii, and Louisiana), and body weight and head size were measured. Microsatellite genotyping was used to establish whether colonies were simple or extended families and to determine the heterozygosity of workers and their degree of inbreeding relative to their colony (F (IC), sensitive to the number of reproductives). All Chinese colonies contained multiple inbreeding neotenics. In Hawaii, 37% of the colonies were simple families and 63% were extended families, both having considerable degrees of inbreeding. In Louisiana, 57% of the colonies were simple families, which were mostly headed by unrelated pairs, and 43% were extended families. In simple families, size and body weight of workers were not associated with F (IC) or heterozygosity. In extended families of two populations, both size parameters were negatively correlated with F (IC); however, heterozygosity was not associated with worker size in any of the populations. This suggests that the number of reproductives within colonies has a stronger influence on worker size than the individuals' genetic diversity in Formosan subterranean termite colonies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号