首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   853篇
  免费   86篇
  2022年   10篇
  2021年   16篇
  2020年   20篇
  2019年   9篇
  2018年   17篇
  2017年   12篇
  2016年   23篇
  2015年   45篇
  2014年   37篇
  2013年   50篇
  2012年   70篇
  2011年   52篇
  2010年   24篇
  2009年   34篇
  2008年   42篇
  2007年   41篇
  2006年   38篇
  2005年   31篇
  2004年   29篇
  2003年   25篇
  2002年   20篇
  2001年   18篇
  2000年   17篇
  1999年   10篇
  1998年   15篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1993年   7篇
  1992年   17篇
  1991年   10篇
  1990年   11篇
  1989年   10篇
  1988年   15篇
  1987年   8篇
  1986年   7篇
  1985年   13篇
  1984年   11篇
  1983年   5篇
  1982年   7篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1975年   6篇
  1974年   6篇
  1973年   11篇
  1971年   9篇
  1966年   4篇
  1960年   3篇
排序方式: 共有939条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
Mechanical signaling plays an important role in cell physiology and pathology. Many cell types, including neurons and glial cells, respond to the mechanical properties of their environment. Yet, for spinal cord tissue, data on tissue stiffness are sparse. To investigate the regional and direction-dependent mechanical properties of spinal cord tissue at a spatial resolution relevant to individual cells, we conducted atomic force microscopy (AFM) indentation and tensile measurements on acutely isolated mouse spinal cord tissue sectioned along the three major anatomical planes, and correlated local mechanical properties with the underlying cellular structures. Stiffness maps revealed that gray matter is significantly stiffer than white matter irrespective of directionality (transverse, coronal, and sagittal planes) and force direction (compression or tension) (Kg= ∼130 Pa vs. Kw= ∼70 Pa); both matters stiffened with increasing strain. When all data were pooled for each plane, gray matter behaved like an isotropic material under compression; however, subregions of the gray matter were rather heterogeneous and anisotropic. For example, in sagittal sections the dorsal horn was significantly stiffer than the ventral horn. In contrast, white matter behaved transversely isotropic, with the elastic stiffness along the craniocaudal (i.e., longitudinal) axis being lower than perpendicular to it. The stiffness distributions we found under compression strongly correlated with the orientation of axons, the areas of cell nuclei, and cellular in plane proximity. Based on these morphological parameters, we developed a phenomenological model to estimate local mechanical properties of central nervous system (CNS) tissue. Our study may thus ultimately help predicting local tissue stiffness, and hence cell behavior in response to mechanical signaling under physiological and pathological conditions, purely based on histological data.  相似文献   
75.
Genome-wide association studies (GWAS) are widely applied to analyze the genetic effects on phenotypes. With the availability of high-throughput technologies for metabolite measurements, GWAS successfully identified loci that affect metabolite concentrations and underlying pathways. In most GWAS, the effect of each SNP on the phenotype is assumed to be additive. Other genetic models such as recessive, dominant, or overdominant were considered only by very few studies. In contrast to this, there are theories that emphasize the relevance of nonadditive effects as a consequence of physiologic mechanisms. This might be especially important for metabolites because these intermediate phenotypes are closer to the underlying pathways than other traits or diseases. In this study we analyzed systematically nonadditive effects on a large panel of serum metabolites and all possible ratios (22,801 total) in a population-based study [Cooperative Health Research in the Region of Augsburg (KORA) F4, N = 1,785]. We applied four different 1-degree-of-freedom (1-df) tests corresponding to an additive, dominant, recessive, and overdominant trait model as well as a genotypic model with two degree-of-freedom (2-df) that allows a more general consideration of genetic effects. Twenty-three loci were found to be genome-wide significantly associated (Bonferroni corrected P ≤ 2.19 × 10−12) with at least one metabolite or ratio. For five of them, we show the evidence of nonadditive effects. We replicated 17 loci, including 3 loci with nonadditive effects, in an independent study (TwinsUK, N = 846). In conclusion, we found that most genetic effects on metabolite concentrations and ratios were indeed additive, which verifies the practice of using the additive model for analyzing SNP effects on metabolites.  相似文献   
76.
The protein arginine methyltransferase PRMT5 is complexed with the WD repeat protein MEP50 (also known as Wdr77 or androgen coactivator p44) in vertebrates in a tetramer of heterodimers. MEP50 is hypothesized to be required for protein substrate recruitment to the catalytic domain of PRMT5. Here we demonstrate that the cross-dimer MEP50 is paired with its cognate PRMT5 molecule to promote histone methylation. We employed qualitative methylation assays and a novel ultrasensitive continuous assay to measure enzyme kinetics. We demonstrate that neither full-length human PRMT5 nor the Xenopus laevis PRMT5 catalytic domain has appreciable protein methyltransferase activity. We show that histones H4 and H3 bind PRMT5-MEP50 more efficiently compared with histone H2A(1–20) and H4(1–20) peptides. Histone binding is mediated through histone fold interactions as determined by competition experiments and by high density histone peptide array interaction studies. Nucleosomes are not a substrate for PRMT5-MEP50, consistent with the primary mode of interaction via the histone fold of H3-H4, obscured by DNA in the nucleosome. Mutation of a conserved arginine (Arg-42) on the MEP50 insertion loop impaired the PRMT5-MEP50 enzymatic efficiency by increasing its histone substrate Km, comparable with that of Caenorhabditis elegans PRMT5. We show that PRMT5-MEP50 prefers unmethylated substrates, consistent with a distributive model for dimethylation and suggesting discrete biological roles for mono- and dimethylarginine-modified proteins. We propose a model in which MEP50 and PRMT5 simultaneously engage the protein substrate, orienting its targeted arginine to the catalytic site.  相似文献   
77.
Galls are anomalies in plant development of parasitic origin that affect the cellular differentiation or growth and represent a remarkable plant–parasite interaction. Byrsonima sericea DC. (Malpighiaceae) is a super host of several different types of gall in both vegetative and reproductive organs. The existence of galls in reproductive organs and their effects on the host plant are seldom described in the literature. In this paper, we present a novel study of galls in plants of the Neotropical region: the ‘witches' broom’ galls developed in floral structures of B. sericea. The unaffected inflorescences are characterised by a single indeterminate main axis with spirally arranged flower buds. The flower buds developed five unaffected brownish hairy sepals and five pairs of elliptical yellow elaiophores, five yellow fringed petals, 10 stamens and a pistil with superior tricarpellar and trilocular ovary. The affected inflorescences showed changes in architecture, with branches arising from the main axis and flower buds. The flower buds exhibited several morphological and anatomical changes. The sepals, petals and carpels converted into leaf‐like structures after differentiation. Stamens exhibited degeneration of the sporogenous tissue and structures containing hyphae and spores. The gynoecium did not develop, forming a central meristematic region, from which emerges the new inflorescence. In this work, we discuss the several changes in development of reproductive structures caused by witches' broom galls and their effects on reproductive success of the host plants.  相似文献   
78.
79.
4-Pyrimidinone ribofuranoside (H(2)o(4)U) and 4-pyrimidinone 2'-deoxyribofuranoside (dH(2)o(4)U) were synthesized by the oxidative desulfurization of parent 2-thiouracil nucleosides with m-chloroperbenzoic acid. The crystal structures of H(2)o(4)U and dH(2)o(4)U and their conformations in solution were determined and compared with corresponding 2-thiouracil and uracil nucleosides. The absence of a large 2-thiocarbonyl/2-carbonyl group in the nucleobase moiety results in C2'-endo puckering of the ribofuranose ring (S conformer) in the crystal structure of H(2)o(4)U, which is not typical of RNA nucleosides. Interestingly, the hydrogen bonding network in the crystals of dH(2)o(4)U stabilizes the sugar moiety conformation in the C3'-endo form (N conformer), rarely found in DNA nucleosides. In aqueous solution, dH(2)o(4)U reveals a similar population of the C2'-endo conformation (65%) to that of 2'-deoxy-2-thiouridine (62%), while the 62% population of the S conformer for H(2)o(4)U is significantly different from that of the parent 2-thiouridine, for which the N conformer is dominant (71%). Such a difference may be of biological importance, as the desulfurization process of natural tRNA 2-thiouridines may occur under conditions of oxidative stress in the cell and may influence the decoding process.  相似文献   
80.
Background aimsLimited cell dose has hampered the use of cord blood transplantation (CBT) in adults. One method of minimizing nucleated cell loss in cord blood (CB) processing is to deplete or reduce plasma but not red blood cells - plasma depletion/reduction (PDR).MethodsThe nucleated cell loss of PDR was studied, and determined to be less than 0.1% in the discarded supernatant plasma fraction in validation experiments. After testing and archival sampling, the median nucleated cell recovery for PDR processing was 90%, and median CD34+ cell recovery 88%. In a CB bank inventory of 12 339 products with both pre- and post-processing total nucleated cells (TNC), PDR processing resulted in median post-processing TNC recoveries of 90.0% after testing and archival samples removal. Using the same 10 CB units divided into two halves, we compared directly the recovery of PDR against hydroxyethyl starch red cell reduction (RCR) for TNC, CD34+ cells and colony-forming units (CFU-GM, CFU-E, CFU-GEMM and total CFU) after parallel processing. We also compared the loss of very small embryonic-like stem cells (VSEL).ResultsWe demonstrated significantly higher recoveries using PDR for TNC (124%), CD34+ cells (121%), CFU-GM (225%), CFU-GEMM (201%), total CFU (186%) and VSEL (187%). The proportion of high TNC products was compared between 10 912 PDR and 38 819 RCR CB products and found to be 200% higher for products that had TNC ≥150 × 107 (P = 0.0001) for the PDR inventory.ConclusionsOur data indicate that PDR processing of CB provides a significantly more efficient usage of this valuable and scarce resource.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号