首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   32篇
  2023年   2篇
  2022年   9篇
  2021年   11篇
  2020年   14篇
  2019年   8篇
  2018年   15篇
  2017年   11篇
  2016年   20篇
  2015年   36篇
  2014年   29篇
  2013年   38篇
  2012年   53篇
  2011年   37篇
  2010年   18篇
  2009年   23篇
  2008年   22篇
  2007年   24篇
  2006年   26篇
  2005年   21篇
  2004年   16篇
  2003年   18篇
  2002年   15篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
  1971年   3篇
  1965年   1篇
  1964年   1篇
  1950年   1篇
  1913年   2篇
排序方式: 共有518条查询结果,搜索用时 31 毫秒
211.
212.

Key message

This study elucidates the influence of indehiscent mutations on rapeseed silique shatter resistance. A phenotype with enlarged replum-valve joint area and altered cell dimensions in the dehiscence zone is described.

Abstract

Silique shattering is a major factor reducing the yield stability of oilseed rape (Brassica napus). Attempts to improve shatter resistance often include the use of mutations in target genes identified from Arabidopsis (Arabidopsis thaliana). A variety of phenotyping methods assessing the level of shatter resistance were previously described. However, a comparative and comprehensive evaluation of the methods has not yet been undertaken. We verified the increase of shatter resistance in indehiscent double knock-down mutants obtained by TILLING with a systematic approach comparing three independent phenotyping methods. A positive correlation of silique length and shatter resistance was observed and accounted for in the analyses. Microscopic studies ruled out the influence of different lignification patterns. Instead, we propose a model to explain increased shattering resistance of indehiscent rapeseed mutants by altered cell shapes and sizes within the contact surfaces of replum and valves.
  相似文献   
213.
214.
Based on data derived from computed tomography, we demonstrate that integrating 2D and 3D morphological data from ammonoid shells represents an important new approach for investigating the palaeobiology of ammonoids. Characterization of ammonite morphology has long been constrained to 2D data, with only a few studies collecting ontogenetic data in 180° steps. Here we combine this traditional approach with 3D data collected from high‐resolution nano‐computed tomography. Ontogenetic morphological data on the hollow shell of a juvenile ammonite Kosmoceras (Jurassic, Callovian) was collected. 2D data was collected in 10° steps and show significant changes in shell morphology. Preserved hollow spines show multiple mineralized membranes never reported before, representing temporal changes in the ammonoid mantle tissue. 3D data show that chamber volumes do not always increase exponentially, as was generally assumed, but may represent a proxy for life events, such as stress phases. Furthermore, chamber volume cannot be simply derived from septal spacing in forms comparable to Kosmoceras. Vogel numbers represent a 3D parameter for chamber shape, and those for Kosmoceras are similar to other ammonoids (Arnsbergites, Amauroceras) and modern cephalopods (Nautilus, Spirula). Two methods to virtually document the suture line ontogeny, used to document phylogenetic relationships of larger taxonomic entities, were applied for the first time and present a promising alternative to hand drawings. The curvature of the chamber surfaces increases during ontogeny due to increasing strength of ornamentation and septal complexity. As this may allow for faster handling of cameral liquid, it could compensate for decreasing SA/V ratios through ontogeny.  相似文献   
215.
Dermacentor reticulatus is the second most important tick species in Poland. Although the north-eastern region of Poland is considered typical for D. reticulatus and is treated as a contiguous area of Eastern populations of the meadow ticks, the occurrence of this tick species in this region to date has been recorded as separate foci. The present report supplements data on the geographical distribution of D. reticulatus in urban and natural biotopes of north-eastern Poland (Warmia and Mazury province). In 2015–2017 (during the springtime activity of ticks) adult questing D. reticulatus were found in 13 of 25 monitored localities. Six sites are located in urbanized areas, within the administrative borders of the city of Olsztyn and seven sites are in natural biotopes in the central part of Warmia and Mazury. A total of 398 adult D. reticulatus ticks, including 257 females and 141 males, were collected. A comparison of data grouped according to urban and natural type of area revealed no statistical differences between them. Taking into account the habitat type, the mean tick density was the highest in open landscapes. The identification of new foci D. reticulatus in the endemic areas of Lyme borreliosis, tick-borne encephalitis and canine babesiosis is crucial for determining the risk of diseases transmitted by ticks and taking proper preventive measures.  相似文献   
216.
217.
The major pea seed albumin fromPisum sativurn was carboxymethylated, cleaved with CNBr, and submitted to sequence analysis of the fragments in order to characterize the structural organization of the protein chains. Four major pools of largely homogeneous CNBr fragments were obtainede and likely N-and C-terminal fragments were identified. StruCtural analysis suggested the presence of single positions with microheterogeneities. It also revealed structures with long segments of distinct homology (52% structural identity), indicating the presence of different but related protein chains, or less likely, of repetitive structural elements within a chain. However, preparations appear largely homogeneous in protein class, and contain similar polypeptide chains of about 200 residues in mainly hydrophilic structures, with few methionine and cysteine/half-cystine residues.  相似文献   
218.
The problem of egg size variations in the Argentine anchovy Engraulis anchoita has been studied in relation to the different seasons of the year and to the different spawning centres within the geographical area. It has been stated that there exist significative differences in egg dimensions between the northern and the southern spawning centre of the reproduction area. Taking into account other biological characteristics of the anchovy from both centres it is suggested that these variations could indicate that the spawning stock is divided into two main genetic groups. It has been found that the average size of anchovy eggs decreases as the spawning season progresses.  相似文献   
219.
Using two commercial immobilized lipases Lipozyme® TL and Novozym® 435 effective kinetic resolution of several novel 3-aryloxy-1-halogenopropan-2-ols was achieved by acyl transfer reaction in organic solvents, yielding both enantiomers with 89–99% ee. In preparative resolutions carried out in tert-butyl methyl ether at 25 °C with vinyl acetate as acyl donor enantioselectivity ratio E was from 64 to 99. The resolved enantiomers were successfully used as chiral building blocks in the synthesis of new 1-alkylamino-3-aryloxypropan-2-ols, by nucleophilic halogen substitution with isopropylamine and tert-butylamine. The obtained products will be evaluated in vitro as potential new β-adrenergic receptors antagonists.  相似文献   
220.
To investigate the functional importance of Proton Gradient Regulation5-Like1 (PGRL1) for photosynthetic performances in the moss Physcomitrella patens, we generated a pgrl1 knockout mutant. Functional analysis revealed diminished nonphotochemical quenching (NPQ) as well as decreased capacity for cyclic electron flow (CEF) in pgrl1. Under anoxia, where CEF is induced, quantitative proteomics evidenced severe down-regulation of photosystems but up-regulation of the chloroplast NADH dehydrogenase complex, plastocyanin, and Ca2+ sensors in the mutant, indicating that the absence of PGRL1 triggered a mechanism compensatory for diminished CEF. On the other hand, proteins required for NPQ, such as light-harvesting complex stress-related protein1 (LHCSR1), violaxanthin de-epoxidase, and PSII subunit S, remained stable. To further investigate the interrelation between CEF and NPQ, we generated a pgrl1 npq4 double mutant in the green alga Chlamydomonas reinhardtii lacking both PGRL1 and LHCSR3 expression. Phenotypic comparative analyses of this double mutant, together with the single knockout strains and with the P. patens pgrl1, demonstrated that PGRL1 is crucial for acclimation to high light and anoxia in both organisms. Moreover, the data generated for the C. reinhardtii double mutant clearly showed a complementary role of PGRL1 and LHCSR3 in managing high light stress response. We conclude that both proteins are needed for photoprotection and for survival under low oxygen, underpinning a tight link between CEF and NPQ in oxygenic photosynthesis. Given the complementarity of the energy-dependent component of NPQ (qE) and PGRL1-mediated CEF, we suggest that PGRL1 is a capacitor linked to the evolution of the PSII subunit S-dependent qE in terrestrial plants.The conversion of solar energy into chemical energy and building material by oxygenic photosynthesis, as performed by plants, green algae, and cyanobacteria, supports much of the life on our planet. The production of oxygen and the assimilation of carbon dioxide into organic matter determines, to a large extent, the composition of our atmosphere. Plant photosynthesis is achieved thanks to a series of reactions that occur mainly in the chloroplast, resulting in light-dependent water oxidation, NADP+ reduction, and ATP formation (Whatley et al., 1963). Two separate photosystems (PSI and PSII) and an ATP synthase (ATPase) embedded in the thylakoid membrane catalyze these reactions. The ATPase produces ATP at the expense of the proton motive force that is generated by the light reactions (Mitchell, 1961). The cytochrome (cyt) b6f complex assures the link between the two photosystems by transferring electrons from the membrane-bound plastoquinone to a soluble carrier, plastocyanin, or cyt c6 and functions in the pumping of protons. NADPH and ATP that are produced by linear electron flow from PSII to PSI are fueled into the Calvin Benson Bassham cycle (Bassham et al., 1950) to fix CO2. In parallel, cyclic electron flow (CEF) between the cyt b6f complex and PSI may occur, which would solely lead to the production of ATP. CEF around PSI has been first recognized by Arnon (1959) and is involved in the reequilibration of the ATP poise and prevention of overreduction of the PSI acceptor side (Alric, 2010; Peltier et al., 2010; Leister and Shikanai, 2013; Shikanai, 2014). In microalgae and vascular plants, CEF operates via an NAD(P)H dehydrogenase-like complex (NDH)-dependent and/or PROTON GRADIENT REGULATION5 (PGR5)-related pathway (Alric, 2010; Peltier et al., 2010; Leister and Shikanai, 2013; Shikanai, 2014). The thylakoid protein Proton Gradient Regulation5-Like1 (PGRL1; DalCorso et al., 2008) has been first discovered as a novel component for the PGR5-dependent CEF pathway in Arabidopsis (Arabidopsis thaliana), as its knockout causes a PGR5-like photosynthetic phenotype and is suggested to operate as a ferredoxin-plastoquinone reductase (Hertle et al., 2013). PGRL1 is also important for efficient CEF in the green alga Chlamydomonas reinhardtii, which becomes particularly evident under settings where CEF is induced, such as in acclimation to iron deficiency, high light (HL), or anaerobic growth conditions (Petroutsos et al., 2009; Iwai et al., 2010; Tolleter et al., 2011; Terashima et al., 2012). Remarkably, a CEF protein supercomplex composed of PSI-light-harvesting complex I (LHCI), LHCII, the cyt b6f complex, ferredoxin-NADPH oxidoreductase, and PGRL1 was isolated from state 2 conditions (Iwai et al., 2010). Under anaerobic conditions, the Ca2+ sensor CAS and Anaerobic response1 (ANR1) were shown to interact with PGRL1 in vivo (Terashima et al., 2012) and were found to be associated with the C. reinhardtii CEF supercomplex. Consistently, depletion of CAS and ANR1 by artificial microRNA expression in C. reinhardtii resulted in strong inhibition of CEF under anoxia, which could be partially rescued by an increase in the extracellular Ca2+ concentration, inferring that CEF is Ca2+ dependent (Terashima et al., 2012). Notably, the regulation of the proton motive force by a two-pore potassium channel in the thylakoid membrane of Arabidopsis (AtTPK3), is also Ca2+ dependent (Carraretto et al., 2013), suggesting that Ca2+-dependent activation of CEF and the channel may work hand in hand.qE, the energy-dependent component of nonphotochemical quenching (NPQ) that occurs due to thermal dissipation of excess absorbed light energy (Li et al., 2000; Peers et al., 2009), is dependent on rapid luminal acidification upon photosynthetic electron transfer (Wraight and Crofts, 1970; Li et al., 2000). Thus, processes such as CEF that contribute to the pH gradient across the thylakoid membrane are interrelated to NPQ, as an acidified lumen is required for efficient qE (Joliot and Finazzi, 2010). In vascular plants, PSII subunit S (PSBS) is essential for efficient qE (Li et al., 2000), whereas qE induction in the green alga C. reinhardtii is mediated by light-harvesting complex stress-related protein3 (LHCSR3), an ancient light-harvesting protein that is missing in vascular plants (Peers et al., 2009). The moss Physcomitrella patens, which possesses genes encoding for PSBS and LHCSR proteins, utilizes both types of regulatory proteins to operate qE (Alboresi et al., 2010), suggesting that land plants evolved a novel PSBS-dependent qE mechanism before losing the ancestral LHCSR-dependent qE found in algae. This makes mosses a very interesting subject for investigating the interrelation and evolution of the CEF and NPQ molecular effectors.Mosses diverged from vascular plants early after land colonization and are one of the oldest groups of land plants present on earth. This places the moss model system P. patens (Rensing et al., 2008) evolutionarily in the middle between algae and vascular plants and makes it an ideal model organism for the study of the evolution of photosynthetic organisms. Analysis of photosynthesis in P. patens can provide insights into the events leading to adaptation to the harsher physicochemical conditions of the terrestrial environment (Rensing et al., 2008), as evidenced by the presence and functional overlap of LHCSRs and PSBS (Alboresi et al., 2010).To obtain insights into the interrelation and evolution of CEF and NPQ, we knocked out the PGRL1 gene from P. patens and analyzed functional phenotypic consequences. Moreover, we compared these phenotypes with phenotypic analyses of C. reinhardtii pgrl1, npq4, and pgrl1 npq4 single and double mutants lacking PGRL1, LHCSR3, and both PGRL1 and LHCSR3, respectively. The data provided strong evidence that the green cut protein PGRL1 (Karpowicz et al., 2011) is required for acclimation to anoxia both in algae and mosses. Moreover, an involvement of PGRL1 in the evolution of PSBS-dependent qE in terrestrial plants is implied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号