首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   4篇
  2021年   3篇
  2018年   3篇
  2016年   3篇
  2014年   5篇
  2013年   9篇
  2012年   6篇
  2011年   13篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   8篇
  2003年   4篇
  2001年   5篇
  2000年   4篇
  1998年   2篇
  1991年   4篇
  1990年   9篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1984年   3篇
  1979年   6篇
  1978年   2篇
  1972年   2篇
  1965年   2篇
  1893年   2篇
  1892年   2篇
  1890年   4篇
  1889年   2篇
  1882年   5篇
  1879年   4篇
  1878年   4篇
  1877年   10篇
  1876年   9篇
  1875年   12篇
  1874年   19篇
  1873年   11篇
  1872年   11篇
  1871年   12篇
  1870年   16篇
  1869年   13篇
  1868年   13篇
  1867年   13篇
  1866年   10篇
  1865年   11篇
  1864年   9篇
  1863年   10篇
  1857年   2篇
排序方式: 共有360条查询结果,搜索用时 640 毫秒
21.
Muscular dystrophies include a diverse group of genetically heterogeneous disorders that together affect 1 in 2000 births worldwide. The diseases are characterized by progressive muscle weakness and wasting that lead to severe disability and often premature death. Rostrocaudal muscular dystrophy (rmd) is a new recessive mouse mutation that causes a rapidly progressive muscular dystrophy and a neonatal forelimb bone deformity. The rmd mutation is a 1.6-kb intragenic deletion within the choline kinase beta (Chkb) gene, resulting in a complete loss of CHKB protein and enzymatic activity. CHKB is one of two mammalian choline kinase (CHK) enzymes (alpha and beta) that catalyze the phosphorylation of choline to phosphocholine in the biosynthesis of the major membrane phospholipid phosphatidylcholine. While mutant rmd mice show a dramatic decrease of CHK activity in all tissues, the dystrophy is only evident in skeletal muscle tissues in an unusual rostral-to-caudal gradient. Minor membrane disruption similar to dysferlinopathies suggest that membrane fusion defects may underlie this dystrophy, because severe membrane disruptions are not evident as determined by creatine kinase levels, Evans Blue infiltration, and unaltered levels of proteins in the dystrophin-glycoprotein complex. The rmd mutant mouse offers the first demonstration of a defect in a phospholipid biosynthetic enzyme causing muscular dystrophy, representing a unique model for understanding mechanisms of muscle degeneration.  相似文献   
22.
Orthologs of the Drosophila gap gene hunchback have been isolated so far only in protostomes. Phylogenetic analysis of recently available genomic data allowed us to confirm that hunchback genes are widely found in protostomes (both lophotrochozoans and ecdysozoans). In contrast, no unequivocal hunchback gene can be found in the genomes of deuterostomes and non-bilaterians. We cloned hunchback in the marine polychaete annelid Platynereis dumerilii and analysed its expression during development. In this species, hunchback displays an expression pattern indicative of a role in mesoderm formation and neurogenesis, and similar to the expression found for hunchback genes in arthropods. These data suggest altogether that these functions are ancestral to protostomes.Pierre Kerner and Fabiola Zelada González contributed equally to this work.  相似文献   
23.
Executive functions are processes that act in harmony to control behaviors necessary for maintaining focus and achieving outcomes. Executive dysfunction in neuropsychiatric disorders is attributed to structural or functional pathology of brain networks involving prefrontal cortex (PFC) and its connections with other brain regions. The PFC receives innervations from different neurons associated with a number of neurotransmitters, especially dopamine (DA). Here we review findings on the contribution of PFC DA to higher-order cognitive and emotional behaviors. We suggest that examination of multifactorial interactions of an individual's genetic history, along with environmental risk factors, can assist in the characterization of executive functioning for that individual. Based upon the results of genetic studies, we also propose genetic mapping as a probable diagnostic tool serving as a therapeutic adjunct for augmenting executive functioning capabilities. We conclude that preservation of the neurological underpinnings of executive functions requires the integrity of complex neural systems including the influence of specific genes and associated polymorphisms to provide adequate neurotransmission.  相似文献   
24.
Cenococcum geophilum is a widely distributed ectomycorrhizal fungus potentially playing a significant role in resistance and resilience mechanisms of its tree hosts exposed to drought stress. In this study, we performed a large scale protein analysis in pure cultures of C. geophilum in order to gain first global insights into the proteome assembly of this fungus. Using 1-D gel electrophoresis coupled with ESI-MS/MS, we indentified 638 unique proteins. Most of these proteins were related to the metabolic and cellular processes, and the transport machinery of cells. In a second step, we examined the influence of water deprivation on the proteome of C. geophilum pure cultures at three time points of gradually imposed drought. The results indicated that 12 proteins were differentially abundant in mycelia subjected to drought compared to controls. The induced responses in C. geophilum point towards regulation of osmotic stress, maintainance of cell integrity, and counteracting increased levels of reactive oxygen species formed during water deprivation.  相似文献   
25.
Distler AM  Kerner J  Hoppel CL 《Proteomics》2008,8(19):4066-4082
For the proteomic study of mitochondrial membranes, documented high quality mitochondrial preparations are a necessity to ensure proper localization. Despite the state-of-the-art technologies currently in use, there is no single technique that can be used for all studies of mitochondrial membrane proteins. Herein, we use examples to highlight solubilization techniques, different chromatographic methods, and developments in gel electrophoresis for proteomic analysis of mitochondrial membrane proteins. Blue-native gel electrophoresis has been successful not only for dissection of the inner membrane oxidative phosphorylation system, but also for the components of the outer membrane such as those involved in protein import. Identification of PTMs such as phosphorylation, acetylation, and nitration of mitochondrial membrane proteins has been greatly improved by the use of affinity techniques. However, understanding of the biological effect of these modifications is an area for further exploration. The rapid development of proteomic methods for both identification and quantitation, especially for modifications, will greatly impact the understanding of the mitochondrial membrane proteome.  相似文献   
26.
27.
The GroEL/GroES chaperonin system mediates the folding of a range of newly synthesized polypeptides in the bacterial cytosol. Using a rapid biotin-streptavidin-based inhibition of chaperonin function, we show that the cage formed by GroEL and its cofactor GroES can have a dual role in promoting folding. First, enclosure of nonnative protein in the GroEL:GroES complex is essential for folding to proceed unimpaired by aggregation. Second, folding inside the cage can be significantly faster than folding in free solution, independently of ATP-driven cycles of GroES binding and release. This suggests that confinement of unfolded protein in the narrow hydrophilic space of the chaperonin cage smoothes the energy landscape for the folding of some proteins, increasing the flux of folding intermediates toward the native state.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号