首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1902篇
  免费   171篇
  国内免费   1篇
  2022年   15篇
  2021年   19篇
  2020年   9篇
  2019年   10篇
  2018年   13篇
  2017年   18篇
  2016年   37篇
  2015年   66篇
  2014年   70篇
  2013年   96篇
  2012年   127篇
  2011年   129篇
  2010年   82篇
  2009年   79篇
  2008年   112篇
  2007年   132篇
  2006年   89篇
  2005年   117篇
  2004年   129篇
  2003年   100篇
  2002年   119篇
  2001年   29篇
  2000年   16篇
  1999年   21篇
  1998年   34篇
  1997年   31篇
  1996年   23篇
  1995年   19篇
  1994年   20篇
  1993年   20篇
  1992年   20篇
  1991年   19篇
  1990年   17篇
  1989年   11篇
  1988年   9篇
  1987年   11篇
  1986年   6篇
  1985年   21篇
  1984年   16篇
  1983年   19篇
  1982年   16篇
  1981年   10篇
  1980年   12篇
  1979年   9篇
  1978年   11篇
  1977年   14篇
  1976年   11篇
  1974年   7篇
  1969年   5篇
  1967年   7篇
排序方式: 共有2074条查询结果,搜索用时 15 毫秒
111.
The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.  相似文献   
112.
Plant-parasitic nematodes Meloidogyne spp induce an elaborate permanent feeding site characterized by the redifferentiation of root cells into multinucleate and hypertrophied giant cells. We have isolated by a promoter trap strategy an Arabidopsis thaliana formin gene, AtFH6, which is upregulated during giant cell formation. Formins are actin-nucleating proteins that stimulate de novo polymerization of actin filaments. We show here that three type-I formins were upregulated in giant cells and that the AtFH6 protein was anchored to the plasma membrane and uniformly distributed. Suppression of the budding defect of the Saccharomyces cerevisiae bni1Delta bnr1Delta mutant showed that AtFH6 regulates polarized growth by controlling the assembly of actin cables. Our results suggest that AtFH6 might be involved in the isotropic growth of hypertrophied feeding cells via the reorganization of the actin cytoskeleton. The actin cables would serve as tracks for vesicle trafficking needed for extensive plasma membrane and cell wall biogenesis. Therefore, determining how plant parasitic nematodes modify root cells into giant cells represents an attractive system to identify genes that regulate cell growth and morphogenesis.  相似文献   
113.
Keratoepithelin (KE) is an extracellular protein participating in cell adhesion and differentiation. Mutations of the KE gene (on 5q31 in humans) cause deposition of abnormal proteins (amyloid and non-amyloid) in corneal stroma and lead to several corneal dystrophies in humans. However, further studies on the KE protein have been limited by the intrinsic difficulty of purifying this protein. A high-expression plasmid containing human KE gene was constructed to generate recombinant KE proteins in Escherichia coli. The plasmid was transformed into E. coli BL21 (DE3) and the recombinant protein was expressed as an insoluble His-tagged fusion protein and purified by nickel chelation affinity chromatography under denaturing conditions. On average, 12 mg of purified KE was routinely obtained from 1L of culture media. The recombinant KE was refolded in arginine-containing dialysis solutions and the recovery of bioactive KE typically was approximately 70%. The procedures developed in this report should enable reproducible production of KE and related mutant proteins in large quantities and facilitate future studies on biochemical and biophysical properties of KE and the pathogenesis of related corneal dystrophies.  相似文献   
114.
Photoreceptor nuclei in the Drosophila eye undergo developmentally regulated migrations. Nuclear migration is known to require the perinuclear protein Klarsicht, but the function of Klarsicht has been obscure. Here, we show that Klarsicht is required for connecting the microtubule organizing center (MTOC) to the nucleus. In addition, in a genetic screen for klarsicht-interacting genes, we identified Lam Dm(0), which encodes nuclear lamin. We find that, like Klarsicht, lamin is required for photoreceptor nuclear migration and for nuclear attachment to the MTOC. Moreover, perinuclear localization of Klarsicht requires lamin. We propose that nuclear migration requires linkage of the MTOC to the nucleus through an interaction between microtubules, Klarsicht, and lamin. The Klarsicht/lamin interaction provides a framework for understanding the mechanistic basis of human laminopathies.  相似文献   
115.
Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT). Sequence alignments identify a signature motif shared by G6PT and a family of transporters of phosphorylated metabolites. Two null signature motif mutations have been identified in the G6PT gene of GSD-Ib patients. In this study, we characterize the activity of seven additional mutants within the motif. Five mutants lack microsomal G6P uptake activity and one retains residual activity, suggesting that in G6PT the signature motif is a functional element required for microsomal glucose-6-phosphate transport.  相似文献   
116.
For viruses that establish persistent infection, continuous immunosurveillance by effector-competent antiviral CD8(+) T cells is likely essential for limiting viral replication. Although it is well documented that virus-specific memory CD8(+) T cells synthesize cytokines after short term in vitro stimulation, there is limited evidence that these T cells exhibit cytotoxicity, the dominant antiviral effector function. Here, we show that antiviral CD8(+) T cells in mice acutely infected by polyoma virus, a persistent mouse pathogen, specifically eliminate viral peptide-pulsed donor spleen cells within minutes after adoptive transfer and do so via a perforin-dependent mechanism. Antiviral memory CD8(+) T cells were similarly capable of rapidly mobilizing potent Ag-specific cytotoxic activity in vivo. These findings strongly support the concept that a cytotoxic effector-memory CD8(+) T cell population operates in vivo to control this persistent viral infection.  相似文献   
117.
An accelerated, consistent macaque simian immunodeficiency virus (SIV) model in which over 90% of pigtailed macaques (Macaca nemestrina) coinoculated with SIV/17E-Fr and SIV/DeltaB670 developed encephalitis was used to determine whether central nervous system (CNS) lesions are associated with the replication of specific genotypes in the brain and, more specifically, in the microglia. Ten of 11 inoculated macaques had severe (n = 3), moderate (n = 5), or mild (n = 2) encephalitis at 3 months postinoculation. To compare actively replicating viral genotypes in the CNS and in microglia with those in the periphery, the V1 region of the SIV envelope gene was amplified and sequenced from RNA extracted from basal ganglia, from microglial cells isolated from the brain, and from peripheral blood mononuclear cells (PBMC) isolated from blood at the time of death. To distinguish between actively replicating with latent viral genotypes in the CNS, viral genotypes in RNA and DNA from basal ganglia were compared. Two macrophage-tropic, neurovirulent viruses, SIV/17E-Fr and SIV/DeltaB670 Cl-2, predominated in the brain RNA of macaques with encephalitis, comprising 95% of the genotypes detected. The same two viral genotypes were present at the same frequencies in microglial cell RNA, suggesting that microglia are pivotal in the selective replication of neurovirulent viruses. There was a significantly greater number of viral genotypes in DNA than there were in RNA in the brain (P = 0.004), including those of both the macrophage- and lymphocyte-tropic viral strains. Furthermore, significantly fewer viral genotypes were detected in brain RNA than in PBMC RNA at the time of death (P = 0.004) and the viral strain that predominated in the brain frequently was different from that which predominated in the PBMC of the same animal. These data suggest that many viral genotypes enter the brain, but only a limited subset of macrophage-tropic, neurovirulent viruses replicate terminally in the brains of macaques with encephalitis. They further suggest that the selection of macrophage-tropic, neurovirulent viruses occurs not at the level of the blood-brain barrier but at a stage after virus entry and that microglial cells may play an important role in that selection process.  相似文献   
118.
Transmissible spongiform encephalopathies (TSEs) may be acquired peripherally, in which case infectivity usually accumulates in lymphoid tissues before dissemination to the nervous system. Studies of mouse scrapie models have shown that mature follicular dendritic cells (FDCs), expressing the host prion protein (PrP(c)), are critical for replication of infection in lymphoid tissues and subsequent neuroinvasion. Since FDCs require lymphotoxin signals from B lymphocytes to maintain their differentiated state, blockade of this stimulation with a lymphotoxin beta receptor-immunoglobulin fusion protein (LT beta R-Ig) leads to their temporary dedifferentiation. Here, a single treatment with LT beta R-Ig before intraperitoneal scrapie inoculation blocked the early accumulation of infectivity and disease-specific PrP (PrP(Sc)) within the spleen and substantially reduced disease susceptibility. These effects coincided with an absence of FDCs in the spleen for ca. 28 days after treatment. Although the period of FDC dedifferentiation was extended to at least 49 days by consecutive LT beta R-Ig treatments, this had little added protective benefit after injection with a moderate dose of scrapie. We also demonstrate that mature FDCs are critical for the transmission of scrapie from the gastrointestinal tract. Treatment with LT beta R-Ig before oral scrapie inoculation blocked PrP(Sc) accumulation in Peyer's patches and mesenteric lymph nodes and prevented neuroinvasion. However, treatment 14 days after oral inoculation did not affect survival time or susceptibility, suggesting that infectivity may have already spread to the peripheral nervous system. Although manipulation of FDCs may offer a potential approach for early intervention in peripherally acquired TSEs, these data suggest that the duration of the treatment window may vary widely depending on the route of exposure.  相似文献   
119.
120.
Complexes of specific presynaptic proteins have been hypothesized to drive or catalyze the membrane fusion steps of exocytosis. Here we use a stage-specific preparation to test the roles of SNAREs, synaptotagmin, and SNARE-binding proteins in the mechanism of Ca2+-triggered membrane fusion. Excess exogenous proteins, sufficient to block SNARE interactions, did not inhibit either the Ca2+ sensitivity, extent, or kinetics of fusion. In contrast, despite a limited effect on SNARE and synaptotagmin densities, treatments with high doses of chymotrypsin markedly inhibited fusion. Conversely, low doses of chymotrypsin had no effect on the Ca2+ sensitivity or extent of fusion but did alter the kinetic profile, indicating a more direct involvement of other proteins in the triggered fusion pathway. SNAREs, synaptotagmin, and their immediate binding partners are critical to exocytosis at a stage other than membrane fusion, although they may still influence the triggered steps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号