首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2799篇
  免费   271篇
  国内免费   1篇
  3071篇
  2022年   22篇
  2021年   30篇
  2020年   16篇
  2019年   23篇
  2018年   27篇
  2017年   30篇
  2016年   53篇
  2015年   77篇
  2014年   100篇
  2013年   142篇
  2012年   182篇
  2011年   169篇
  2010年   115篇
  2009年   99篇
  2008年   148篇
  2007年   171篇
  2006年   127篇
  2005年   148篇
  2004年   178篇
  2003年   130篇
  2002年   157篇
  2001年   71篇
  2000年   62篇
  1999年   58篇
  1998年   47篇
  1997年   33篇
  1996年   33篇
  1995年   32篇
  1994年   34篇
  1993年   26篇
  1992年   32篇
  1991年   34篇
  1990年   26篇
  1989年   36篇
  1988年   27篇
  1987年   26篇
  1986年   14篇
  1985年   28篇
  1984年   27篇
  1983年   28篇
  1982年   22篇
  1980年   14篇
  1979年   16篇
  1978年   26篇
  1977年   20篇
  1976年   16篇
  1975年   16篇
  1974年   15篇
  1973年   15篇
  1972年   15篇
排序方式: 共有3071条查询结果,搜索用时 0 毫秒
991.

Background

Non-coding sequences such as microRNAs have important roles in disease processes. Computational microRNA target identification (CMTI) is becoming increasingly important since traditional experimental methods for target identification pose many difficulties. These methods are time-consuming, costly, and often need guidance from computational methods to narrow down candidate genes anyway. However, most CMTI methods are computationally demanding, since they need to handle not only several million query microRNA and reference RNA pairs, but also several million nucleotide comparisons within each given pair. Thus, the need to perform microRNA identification at such large scale has increased the demand for parallel computing.

Methods

Although most CMTI programs (e.g., the miRanda algorithm) are based on a modified Smith-Waterman (SW) algorithm, the existing parallel SW implementations (e.g., CUDASW++ 2.0/3.0, SWIPE) are unable to meet this demand in CMTI tasks. We present CUDA-miRanda, a fast microRNA target identification algorithm that takes advantage of massively parallel computing on Graphics Processing Units (GPU) using NVIDIA's Compute Unified Device Architecture (CUDA). CUDA-miRanda specifically focuses on the local alignment of short (i.e., ≤ 32 nucleotides) sequences against longer reference sequences (e.g., 20K nucleotides). Moreover, the proposed algorithm is able to report multiple alignments (up to 191 top scores) and the corresponding traceback sequences for any given (query sequence, reference sequence) pair.

Results

Speeds over 5.36 Giga Cell Updates Per Second (GCUPs) are achieved on a server with 4 NVIDIA Tesla M2090 GPUs. Compared to the original miRanda algorithm, which is evaluated on an Intel Xeon E5620@2.4 GHz CPU, the experimental results show up to 166 times performance gains in terms of execution time. In addition, we have verified that the exact same targets were predicted in both CUDA-miRanda and the original miRanda implementations through multiple test datasets.

Conclusions

We offer a GPU-based alternative to high performance compute (HPC) that can be developed locally at a relatively small cost. The community of GPU developers in the biomedical research community, particularly for genome analysis, is still growing. With increasing shared resources, this community will be able to advance CMTI in a very significant manner. Our source code is available at https://sourceforge.net/projects/cudamiranda/.
  相似文献   
992.
Metabolomics assays have recently been used in humans for the identification of biomarkers for dietary assessment and diseases. The application of metabolomics to feline nutrition, however, has been very limited. The objective of this study was to identify how the feline blood metabolome changed in response to dietary macronutrient composition. Twelve adult domestic cats were fed four nutritionally complete diets [control, high-fat (HF), high-protein (HP), high-carbohydrate (HC)] at amounts to maintain ideal body weight and body condition score for 16 days. Overnight fasted plasma samples were collected on day 16 and subjected to liquid/gas chromatography and mass spectrometry. Principal component analysis showed that metabolite profiles of cats fed HP, HF, and HC dietary regimes formed distinct clusters. Cats fed the HP diet had a metabolite profile associated with decreased nucleotide catabolism, but increased amino acid metabolism and ketone bodies, indicating a greater use of protein and fat for energy. Cats fed the HP diet had a significant increase in metabolites associated with gut microbial metabolism. Cats fed the HF diet had metabolites indicative of increased lipid metabolism, including free fatty acids, monoacylglycerols, glycerol-3-phosphate, cholesterol, ketone bodies, and markers of oxidative stress. γ-glutamylleucine, 3-hydroxyisobutyrate, and 3-indoxyl sulfate were identified by random forest analysis to distinguish cats fed the three macronutrient-rich diets. In conclusion, macronutrient-rich diets primarily altered markers of amino acid and lipid metabolism, with little changes in markers of carbohydrate and energy metabolism. Moreover, the HP diet influenced several metabolites originating from gut microbial metabolism.  相似文献   
993.
Chronic exposure to stressors has been shown to suppress immune function in vertebrates, making them more susceptible to pathogens. It is less clear, however, whether many natural stressors are immunosuppressive. Moreover, whether stressors make disease more likely or more severe in populations is unclear because animals respond to stressors both behaviorally and physiologically. We tested whether chronic exposure to three natural stressors of wood frog tadpoles—high-densities, predator-cues, and low-food conditions—influence their susceptibility to a lethal ranavirus both individually in laboratory experiments, and collectively in outdoor mesocosms. Prior to virus exposure, we observed elevated corticosterone only in low-food treatments, although other treatments altered rates of growth and development as well as tadpole behavior. None of the treatments, however, increased susceptibility to ranavirus as measured by the proportion of tadpoles that became infected or died, or the time to death compared to controls. In fact, mortality in the mesocosms was actually lower in the high-density treatment even though most individuals became infected, largely because of increased rates of metamorphosis. Overall we find no support for the hypothesis that chronic exposure to common, ecologically relevant challenges necessarily elevates corticosterone levels in a population or leads to more severe ranaviral disease or epidemics. Conditions may, however, conspire to make ranavirus infection more common in metamorphosing amphibians.  相似文献   
994.
Transgenic solutions are being widely explored to develop huanglongbing (HLB) resistance in citrus. A critical component of a transgenic construct is the promoter, which determines tissue specificity and level of target gene expression. This study compares the characteristics of five promoters regulating the beta-glucuronidase (GUS) reporter gene in the trifoliate hybrid rootstock US-802. Two of the selected promoters direct high levels of constitutive transgene expression in other dicotyledonous plants: 2X35S, the tandem-repeat promoter of the cauliflower mosaic virus 35S gene and bul409S, a truncation of the potato polyubiquitin promoter. Because Candidatus Liberibacter, the Gram-negative bacterium associated with HLB, infects only the phloem tissue, it may be advantageous to limit transgene expression to the vascular tissue and reduce expression in the fruit. Thus, we also tested three promoters that demonstrate phloem specificity when transformed and expressed in other plants: WDV, from wheat dwarf geminivirus; AtSUC2, the sucrose-H+ symporter gene promoter from Arabidopsis; and CsSUS, the sucrose synthase promoter from citrus. Histochemical staining for GUS activity was observed throughout leaf and stem tissues for the constitutive promoters, while the three phloem-specific promoters largely showed the expected tissue-specific staining. Expression of GUS in some individual transformants with promoters CsSUS and WDV appeared leaky, with some laminar tissue staining. Relative quantification of qRT-PCR data revealed a wide range of mRNA abundance from transgenics with each of the five promoters. Fluorometry also revealed that GUS activity differed depending on the promoter used, but mRNA levels and enzyme activity were not highly correlated.  相似文献   
995.
Background aimsCertain therapies (e.g., daclizumab) that promote expansion of natural killer (NK) cells are associated with clinical amelioration of disease in the context of multiple sclerosis and associated mouse models. The clinical benefits are putatively attributable to an enhanced capacity of NK cells to kill activated pathogenic T cells. Whether a parallel approach will also be effective in systemic lupus erythematosus (lupus), a multi-organ autoimmune disease driven by aberrant responses of self-reactive T and B cells, is unclear.MethodsIn the present study, the authors assess the therapeutic impact of IL-2- and IL-15-based strategies for expanding NK cells on measures of lupus-like disease in a mouse model.ResultsUnexpectedly, cytokine-mediated expansion of cytotoxic lymphocytes aggravated immunological measures of lupus-like disease. Depletion studies revealed that the negative effects of these cytokine-based regimens can largely be attributed to expansion of CD8 T cells rather than NK cells.ConclusionsThese results provoke caution in the use of cytokine-based therapeutics to treat co-morbid cancers in patients with lupus and highlight the need for new methods to selectively expand NK cells to further assess their clinical value in autoimmune disease.  相似文献   
996.
997.
998.
The two key processes in growth polarisation are the generation of a confined region and the correct positioning of that region. Fission yeast has greatly contributed to the study of cell polarisation, particularly in the aspect of growth site positioning, which involves the interphase microtubule cytoskeleton. Here we review the mechanisms of growth polarity in vegetatively growing fission yeast cells. These seemingly simple cells show astonishingly complex growth polarity behaviour, including polarity switching and integrating multiple levels of control by the cell cycle machinery. We aim to extract and highlight the underlying concepts and discuss these in context of current understanding; showing how relevant proteins are networked to integrate the various machineries.  相似文献   
999.
1000.
Infantile GM1 gangliosidosis is caused by the absence or reduction of lysosomal beta-galactosidase activity. Studies conducted in Brazil have indicated that it is one of the most frequent lysosomal storage disorders in the southern part of the country. To assess the incidence of this disorder, 390 blood donors were tested for the presence of two common mutations (1622-1627insG and R59H) in the GLB1 gene. Another group, consisting of 26 GM1 patients, and the blood donors were tested for the presence of two polymorphisms (R521C and S532G), in an attempt to elucidate whether there is a founder effect. The frequencies of the R59H and 1622-1627insG mutations among the GM1 patients studied were 19.2% and 38.5%, respectively. The frequency of polymorphism S532G was 16.7%, whereas R521C was not found in the patients. The overall frequency of either R59H or 1622-1627insG was 57.7% of the disease-causing alleles. This epidemiological study suggested a carrier frequency of 1:58. Seven different haplotypes were found. The 1622-1627insG mutation was not found to be linked to any polymorphism, whereas linkage disequilibrium was found for haplotype 2 (R59H, S532G) (p < 0.001). These data confirm the high incidence of GM1 gangliosidosis and the high frequency of two common mutations in southern Brazil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号