首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3343篇
  免费   262篇
  国内免费   5篇
  2024年   10篇
  2023年   12篇
  2022年   54篇
  2021年   91篇
  2020年   53篇
  2019年   74篇
  2018年   112篇
  2017年   100篇
  2016年   132篇
  2015年   195篇
  2014年   212篇
  2013年   226篇
  2012年   305篇
  2011年   293篇
  2010年   145篇
  2009年   141篇
  2008年   205篇
  2007年   207篇
  2006年   147篇
  2005年   152篇
  2004年   175篇
  2003年   116篇
  2002年   106篇
  2001年   67篇
  2000年   71篇
  1999年   44篇
  1998年   31篇
  1997年   12篇
  1996年   14篇
  1995年   13篇
  1994年   12篇
  1993年   4篇
  1992年   16篇
  1991年   14篇
  1990年   7篇
  1989年   8篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1984年   3篇
  1983年   5篇
  1980年   2篇
  1971年   1篇
  1965年   1篇
  1960年   2篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1954年   2篇
  1952年   1篇
排序方式: 共有3610条查询结果,搜索用时 15 毫秒
961.
Amino acid availability is sensed by various signaling molecules, including general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1). However, it is unclear how these sensors are associated with cancer cell survival under low amino acid availability. In the present study, we investigated AKT activation in non-small cell lung cancer (NSCLC) cells deprived of each one of 20 amino acids. Among the 20 amino acids, deprivation of glutamine, arginine, methionine, and lysine induced AKT activation. AKT activation was induced by GCN2/ATF4/REDD1 axis-mediated mTORC2 activation under amino acid deprivation. In CRISPR-Cas9-mediated REDD1-knockout cells, AKT activation was not induced by amino acid deprivation, indicating that REDD1 plays a major role in AKT activation under amino acid deprivation. Knockout of REDD1 sensitized cells cultured under glutamine deprivation conditions to radiotherapy. Taken together, GCN2/ATF4/REDD1 axis induced by amino acid deprivation promotes cell survival signal, which might be a potential target for cancer therapy.Subject terms: Cancer metabolism, Cell death  相似文献   
962.
The bacterial second messenger bis-(3′-5′)-cyclic diguanylate monophosphate (c-di-GMP) controls various cellular processes, including motility, toxin production, and biofilm formation. c-di-GMP is enzymatically synthesized by GGDEF domain–containing diguanylate cyclases and degraded by HD-GYP domain–containing phosphodiesterases (PDEs) to 2 GMP or by EAL domain–containing PDE-As to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG). Since excess pGpG feedback inhibits PDE-A activity and thereby can lead to the uncontrolled accumulation of c-di-GMP, a PDE that degrades pGpG to 2 GMP (PDE-B) has been presumed to exist. To date, the only enzyme known to hydrolyze pGpG is oligoribonuclease Orn, which degrades all kinds of oligoribonucleotides. Here, we identified a pGpG-specific PDE, which we named PggH, using biochemical approaches in the gram-negative bacteria Vibrio cholerae. Biochemical experiments revealed that PggH exhibited specific PDE activity only toward pGpG, thus differing from the previously reported Orn. Furthermore, the high-resolution structure of PggH revealed the basis for its PDE activity and narrow substrate specificity. Finally, we propose that PggH could modulate the activities of PDE-As and the intracellular concentration of c-di-GMP, resulting in phenotypic changes including in biofilm formation.  相似文献   
963.
The segregation of homologous chromosomes from one another is the essence of meiosis. In many organisms, accurate segregation is ensured by the formation of chiasmata resulting from crossing over. Drosophila melanogaster females use this type of recombination-based system, but they also have mechanisms for segregating achiasmate chromosomes with high fidelity. We describe a P-element mutagenesis and screen in a sensitized genetic background to detect mutations that impair meiotic chromosome pairing, recombination, or segregation. Our screen identified two new recombination-deficient mutations: mei-P22, which fully eliminates meiotic recombination, and mei-P26, which decreases meiotic exchange by 70% in a polar fashion. We also recovered an unusual allele of the ncd gene, whose wild-type product is required for proper structure and function of the meiotic spindle. However, the screen yielded primarily mutants specifically defective in the segregation of achiasmate chromosomes. Although most of these are alleles of previously undescribed genes, five were in the known genes alphaTubulin67C, CycE, push, and Trl. The five mutations in known genes produce novel phenotypes for those genes.  相似文献   
964.
965.
Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.  相似文献   
966.
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol’s effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT.  相似文献   
967.
Inositol hexakisphosphate kinase (IP6K) is an important mammalian enzyme involved in various biological processes such as insulin signalling and blood clotting. Recent analyses on drug metabolism and pharmacokinetic properties on TNP (N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine), a pan-IP6K inhibitor, have suggested that it may inhibit cytochrome P450 (CYP450) enzymes and induce unwanted drug-drug interactions in the liver. In this study, we confirmed that TNP inhibits CYP3A4 in type I binding mode more selectively than the other CYP450 isoforms. In an effort to find novel purine-based IP6K inhibitors with minimal CYP3A4 inhibition, we designed and synthesised 15 TNP analogs. Structure-activity relationship and biochemical studies, including ADP-Glo kinase assay and quantification of cell-based IP7 production, showed that compound 9 dramatically reduced CYP3A4 inhibition while retaining IP6K-inhibitory activity. Compound 9 can be a tool molecule for structural optimisation of purine-based IP6K inhibitors.  相似文献   
968.
Angiogenesis after tissue injury occurs in a matrix environment consisting of fibrin, fibronectin, and vitronectin as the major extracellular matrix (ECM) constituents. ECM-integrin interactions is critical for angiogenesis and failure to bind a ligand to certain integrin receptors (αvβ3 or αvβ5) inhibits angiogenesis. The ligand that binds to αvβ3 or αvβ5 integrin receptors during microvascular angiogenesis has not been identified. Our hypothesis is that provisional matrix molecules provide the environmental context cues to microvascular endothelial cells and promote angiogenesis by decreased programmed cell death. Using cultured human microvascular endothelial cells, we show that vitronectin, in comparison to growth on alternative provisional matrix molecules (fibronectin, fibrinogen plus thrombin), collagen I, and basement membrane molecules (collagen IV), significantly reduces microvascular endothelial cell death in vitro. This reduction was observed using morphologic criteria, TdT-mediated dUTP nick end labeling (TUNEL) assay, histone release into the cytoplasm, and thymidine release into the supernatant. Though our data confirm that vitronectin may bind to more than one integrin receptor to reduce MEC apoptosis, binding to the αv component appears to be the critical integrin subcomponent for reducing apoptosis. J. Cell. Physiol. 175:149–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
969.
A novel preparation method of magnetized palm shell waste-based powdered activated carbon (MPPAC, avg. size 112 μm) was developed. The prepared MPPAC was assessed by several physicochemical analyses, and batch tests were performed for ibuprofen (IBP) removal. Field emission scanning electron microscopy (FESEM) and N2 gas isotherms revealed that magnetite and maghemite were homogeneous and deposited mostly on the surface of PPAC without a significant clogging effect on the micropores. Isotherm results showed that 3.8% Fe (w/w) impregnated PPAC [MPPAC-Fe(3.8%)] had about 2.2-fold higher maximum sorption capacity (157.3 mg g-1) and a 2.5-fold higher sorption density (0.23 mg m-2) than pristine PPAC. Both Fourier-transform infrared spectroscopy (FTIR) and isotherm data indicated that the high sorption capacity and density of IBP by MPPAC was primarily attributable to donor-acceptor complexes with the C = O group and dispersive π-π interactions with the carbon surface. Based on kinetic and repeated adsorption tests, pore diffusion was the rate-limiting step, and MPPAC-Fe(3.8%) had about 1.9~2.8- and 9.1~15.8-fold higher rate constants than MPPAC-Fe(8.6%) and palm shell-waste granular activated carbon (PGAC, avg. size 621 μm), respectively. MPPAC showed almost eight fold greater re-adsorption capacity than PPAC due to a thermal catalytic effect of magnetite/maghemite.  相似文献   
970.
The variation in reaction dynamics of OH hydrogen abstraction from glycine between HF, MP2, CCSD(T), M05-2X, BHandHLYP, and B3LYP levels was demonstrated. The abstraction mode shows distinct patterns between these five levels and determines the barrier height, and the spin density transfer between OH radical and glycine. These differences are mainly resulted from the spin density distribution and geometry of the alpha carbon during the abstraction. The captodative effect which is commonly believed as one of the major factors to stabilize the caron-centered radical can only be observed in DFT levels but not in HF and MP2 levels. Difference in the abstraction energy were found in these calculation levels, by using the result of CCSD(T) as reference, B3LYP, BHandHLYP, and M05-2X underestimated the reaction barrier about 5.1, 0.1, and 2.4 kcal mol-1, while HF and MP2 overestimated 19.1 kcal mol-1 and 1.6 kcal mol-1, respectively. These differences can be characterized by the vibration mode of imaginary frequency of transition states, which indicates the topology around transition states and determines reaction barrier height. In this model system, BHandHLYP provides the best prediction of the energy barrier among those tested methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号