首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3341篇
  免费   264篇
  国内免费   5篇
  3610篇
  2024年   10篇
  2023年   12篇
  2022年   54篇
  2021年   91篇
  2020年   53篇
  2019年   74篇
  2018年   112篇
  2017年   100篇
  2016年   132篇
  2015年   195篇
  2014年   212篇
  2013年   226篇
  2012年   305篇
  2011年   293篇
  2010年   145篇
  2009年   141篇
  2008年   205篇
  2007年   207篇
  2006年   147篇
  2005年   152篇
  2004年   175篇
  2003年   116篇
  2002年   106篇
  2001年   67篇
  2000年   71篇
  1999年   44篇
  1998年   31篇
  1997年   12篇
  1996年   14篇
  1995年   13篇
  1994年   12篇
  1993年   4篇
  1992年   16篇
  1991年   14篇
  1990年   7篇
  1989年   8篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1984年   3篇
  1983年   5篇
  1980年   2篇
  1971年   1篇
  1965年   1篇
  1960年   2篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1954年   2篇
  1952年   1篇
排序方式: 共有3610条查询结果,搜索用时 12 毫秒
101.
Ischemia and simulated ischemic conditions cause intracellular Ca2+ overload in the myocardium. The relationship between ischemia injury and Ca2+ overload has not been fully characterized. The aim of the present study was to investigate the expression and characteristics of PLC isozymes in myocardial infarction-induced cardiac remodeling and heart failure. In normal rat heart tissue, PLC-delta1 (about 44 ng/mg of heart tissue) was most abundant isozymes compared to PLC-gamma1 (6.8 ng/mg) and PLC-beta1 (0.4 ng/mg). In ischemic heart and hypoxic neonatal cardiomyocytes, PLC-delta1, but not PLC-beta1 and PLC-gamma1, was selectively degraded, a response that could be inhibited by the calpain inhibitor, calpastatin, and by the caspase inhibitor, zVAD-fmk. Overexpression of the PLC-delta1 in hypoxic neonatal cardiomyocytes rescued intracellular Ca2+ overload by ischemic conditions. In the border zone and scar region of infarcted myocardium, and in hypoxic neonatal cardiomyocytes, the selective degradation of PLC-delta1 by the calcium sensitive proteases may play important roles in intracellular Ca2+ regulations under the ischemic conditions. It is suggested that PLC isozyme-changes may contribute to the alterations in calcium homeostasis in myocardial ischemia.  相似文献   
102.
Liu H  Jang JK  Kato N  McKim KS 《Genetics》2002,162(1):245-258
Double-strand breaks (DSB) initiate meiotic recombination in a variety of organisms. Here we present genetic evidence that the mei-P22 gene is required for the induction of DSBs during meiotic prophase in Drosophila females. Strong mei-P22 mutations eliminate meiotic crossing over and suppress the sterility of DSB repair-defective mutants. Interestingly, crossing over in mei-P22 mutants can be restored to almost 50% of wild-type by X irradiation. In addition, an antibody-based assay was used to demonstrate that DSBs are not formed in mei-P22 mutants. This array of phenotypes is identical to that of mei-W68 mutants; mei-W68 encodes the Drosophila Spo11 homolog that is proposed to be an enzyme required for DSB formation. Consistent with a direct role in DSB formation, mei-P22 encodes a basic 35.7-kD protein, which, when examined by immunofluorescence, localizes to foci on meiotic chromosomes. MEI-P22 foci appear transiently in early meiotic prophase, which is when meiotic recombination is believed to initiate. By using an antibody to C(3)G as a marker for synaptonemal complex (SC) formation, we observed that SC is present before MEI-P22 associates with the chromosomes, thus providing direct evidence that the development of SC precedes the initiation of meiotic recombination. Similarly, we found that MEI-P22 foci did not appear in a c(3)G mutant in which SC does not form, suggesting that DSB formation is dependent on SC formation in Drosophila. We propose that MEI-P22 interacts with meiosis-specific chromosome proteins to facilitate DSB creation by MEI-W68.  相似文献   
103.
Tak H  Jang E  Kim SB  Park J  Suk J  Yoon YS  Ahn JK  Lee JH  Joe CO 《Cellular signalling》2007,19(11):2379-2387
The signal pathway by which 14-3-3epsilon inhibits cell migration induced by MAPK-activated protein kinase 5 (MK5) was investigated in cultured HeLa cells. Both in vivo and in vitro analyses have revealed that 14-3-3epsilon interacts with MK5. 14-3-3epsilon bound to MK5 inhibits the phosphorylation of HSP27, a known substrate of MK5. Disturbance of actin cytoskeleton organization by 14-3-3epsilon was shown in transfected cells transiently expressing 14-3-3epsilon as well as established cells stably expressing 14-3-3epsilon. Moreover, overexpression of 14-3-3epsilon resulted in the inhibition of cell migration induced by MK5 overexpression or TNFalpha treatment. Our results suggest that 14-3-3epsilon bound to MK5 inhibits cell migration by inhibiting the phosphorylation of HSP27 whose phosphorylation regulates F-actin polymerization, actin cytoskeleton organization and subsequent actinfilament dynamics.  相似文献   
104.
A polymerase chain reaction (PCR)-based method was developed to detect the DNA of Ralstonia solanacearum, the causal agent of bacterial wilt in various crop plants. One pair of primers (RALSF and RALSR), designed using cytochrome c1 signal peptide sequences specific to R. solanacearum, produced a PCR product of 932 bp from 13 isolates of R. solanacearum from several countries. The primer specificity was then tested using DNA from 21 isolates of Ralstonia, Pseudomonas, Burkholderia, Xanthomonas, and Fusarium oxysporum f. sp. dianthi. The specificity of the cytochrome c1 signal peptide sequences in R. solanacearum was further confirmed by a DNA-dot blot analysis. Moreover, the primer pair was able to detect the pathogen in artificially inoculated soil and tomato plants. Therefore, the present results indicate that the primer pair can be effectively used for the detection of R. solanacearum in soil and host plants.  相似文献   
105.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
106.
The N‐degron pathway determines the half‐life of proteins in both prokaryotes and eukaryotes by precisely recognizing the N‐terminal residue (N‐degron) of substrates. ClpS proteins from bacteria bind to substrates containing hydrophobic N‐degrons (Leu, Phe, Tyr, and Trp) and deliver them to the caseinolytic protease system ClpAP. This mechanism is preserved in organelles such as mitochondria and chloroplasts. Bacterial ClpS adaptors bind preferentially to Leu and Phe N‐degrons; however, ClpS1 from Arabidopsis thaliana (AtClpS1) shows a difference in that it binds strongly to Phe and Trp N‐degrons and only weakly to Leu. This difference in behavior cannot be explained without structural information due to the high sequence homology between bacterial and plant ClpS proteins. Here, we report the structure of AtClpS1 at 2.0 Å resolution in the presence of a bound N‐degron. The key determinants for α‐amino group recognition are conserved among all ClpS proteins, but the α3‐helix of eukaryotic AtClpS1 is significantly shortened, and consequently, a loop forming a pocket for the N‐degron is moved slightly outward to enlarge the pocket. In addition, amino acid replacement from Val to Ala causes a reduction in hydrophobic interactions with Leu N‐degron. A combination of the fine‐tuned hydrophobic residues in the pocket and the basic gatekeeper at the entrance of the pocket controls the N‐degron selectivity of the plant ClpS protein.  相似文献   
107.
Summary A pea vicilin promoter-diphtheria toxin A (DTx-A) chain gene fusion was introduced into Arabidopsis and tobacco. The chimeric Dtx-A gene behaves as a dominant, seed-lethal, Mendelian factor, and the segregation ratios are consistent with the numbers of integrated copies as revealed by Southern blotting. Germination deficiency results from distinct developmental abnormalities, thus allowing genetic dissection of seed development. The endosperm is affected first in both species. In Arabidopsis, full cellularization of the initially syncytial endosperm does not take place, which results in shrinkage and a shriveled appearance of the mature dry seed. The embryo, which appears structurally normal and lacks visible lesions, ceases to develop at the partially recurved cotyledon stage and does not use the remaining endosperm. In tobacco, peripheral degeneration and premature termination of cellular endosperm development occurs at the cotyledon initiation stage. Lesions appear in the cotyledons at the advanced cotyledon stage, but the embryo continues to grow and attains nearly the same size and level of differentiation as mature wild-type embryos before degeneration and intracellular disintegration take place throughout. Accumulation of protein bodies and other cytoplasmic inclusions is very limited and occurs only in few cells. The timing and distribution of lesions follow a pattern typical for accumulation of protein bodies in wild-type seeds. These observations are consistent with expression of the vicilin promoter in the enlargement phase of cell differentiation. A novel tissue interaction arises, when the embryo uses up all the arrested endosperm: the embryo proves to be capable of absorbing the parenchyma layers of the integument, which are normally obliterated by, and incorporated into, the endosperm. The mature seed thus consists of a seed coat of one rigid cell layer, and a degenerated embryo. The genetic ablation technique has thus contributed to the establishment of the sequence of events and elucidation of the role of different cell lineages and tissues in seed development.  相似文献   
108.
In cardiac myocytes, stimulation of alpha(1)-adrenoceptor (AR) leads to a hypertrophic phenotype. The G(h) protein (transglutaminase II, TGII) is tissue type transglutaminase and transmits the alpha(1B)-adrenoceptor signal with GTPase activity. Recently, it has been shown that the calreticulin (CRT) down-regulates both GTP binding and transglutaminase activities of TGII. To elucidate whether G(h) mediates norepinephrine-stimulated intracellular signal transductions leading to activation of extracellular signal-regulated kinases (ERKs) and neonatal rat cardiomyocyte hypertrophy, we examined the effects of G(h) on the activation of ERKs and inhibitory effects of CRT on alpha(1)-adrenoceptor/G(h) signaling. In neonatal rat cardiomyocytes, norepinephrine-induced ERKs activation was inhibited by an alpha(1)-adrenoceptor blocker (prazosin), but not by an beta-adrenoceptor blocker (propranolol). Overexpression of the G(h) protein stimulated norepinephrine-induced ERKs activation, which was inhibited by alpha-adrenoceptor blocker (prazosin). Co-overexpression of G(h) and CRT abolished norepinephrine-induced ERKs activation. Taken together, norepinephrine induces hypertrophy in neonatal rat cardiomyocytes through alpha(1)-AR stimulation and G(h) is partly involved in norepinephrine-induced MEK1,2/ERKs activation. Activation of G(h)-mediated MEK1,2/ERKs was completely inhibited by CRT.  相似文献   
109.
ABSTRACT

Benign prostatic hyperplasia (BPH) is commonly observed in men > 50 years worldwide. Phytotherapy is one of the many treatment options. Sorghum (Sorghum bicolor L.) contains various health-improving phytochemicals with antioxidant and inhibitory activities on cell proliferation, both in vitro and in vivo. To confirm the effects of Donganme sorghum ethyl-acetate extract (DSEE) on BPH, we induced BPH in Spragye–Dawley rats using exogenous testosterone. We measured prostate weight, examined prostrates histopathologically, and analyzed mRNAs associated with male hormones and proteins associated with cell proliferation in the prostate. DSEE inhibited weight gain of the prostate; decreased mRNA expressions of androgen receptor and 5α-reductase II; and improved histopathological symptoms, the protein-expressed ratio of Bax/Bcl-2, and the oxidative status of BPH induced by testosterone in SD rats. Therefore, DSEE may have potential as a preventive or therapeutic agent against BPH.  相似文献   
110.
The aim of this study was to investigate whether roscovitine (the cyclin-dependent kinase 2 inhibitor) effectively induces synchronization of the donor cell cycle at G0/G1 and to examine the effect of donor cell cycle synchronization protocols on canine somatic cell nucleus transfer. Canine fibroblasts were obtained from skin biopsy cultures taken from a 7-yr-old retriever. The donor cell cycle was synchronized either by culturing cells to reach confluency or by treating cells with 15 μg/mL roscovitine for 24 h. Cell cycle stages and apoptosis were analyzed by flow cytometry. After synchronization of the donor cell cycle, cells were placed with enucleated in vivo-matured dog oocytes, fused by electric stimulation, activated, and transferred into 18 naturally estrus-synchronized surrogates. There was no significant difference in cell cycle synchronization and apoptosis rates between the confluent and roscovitine groups. After transfer of reconstructed embryos, pregnancy was detected in three of nine surrogates that received cloned embryos reconstructed with roscovitine-treated cells, whereas only one of nine surrogates was pregnant after transfer of cloned embryos reconstructed with confluent cells. One pregnant female from the confluent cell group delivered one live and one dead pup, but the live one died within 5 days after birth. Three pregnant females from the roscovitine-treated cell group delivered eight live pups and one dead pup, and one of eight live pups died within 6 days after birth. In conclusion, the current results demonstrated that reconstructing embryos with roscovitine-treated cells resulted in increased efficiency of canine somatic cell nucleus transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号