首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   7篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   6篇
  2013年   9篇
  2012年   14篇
  2011年   15篇
  2010年   11篇
  2009年   11篇
  2008年   13篇
  2007年   12篇
  2006年   8篇
  2005年   9篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  2000年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1987年   2篇
  1985年   1篇
  1980年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
91.
Acetylcholinesterase-associated collagen Q is expressed also outside of neuromuscular junctions in the slow soleus muscle, but not in fast muscles. We examined the nerve dependence of muscle collagen Q expression and mechanisms responsible for these differences. Denervation decreased extrajunctional collagen Q mRNA levels in the soleus muscles and junctional levels in fast sternomastoid muscles to about one third. Cross-innervation of denervated soleus muscles by a fast muscle nerve, or electrical stimulation by 'fast' impulse pattern, reduced their extrajunctional collagen Q mRNA levels by 70–80%. In contrast, stimulation of fast muscles by 'slow' impulse pattern had no effect on collagen Q expression. Calcineurin inhibitors tacrolimus and cyclosporin A decreased collagen Q mRNA levels in the soleus muscles to about 35%, but did not affect collagen Q expression in denervated soleus muscles or the junctional expression in fast muscles. Therefore, high extrajunctional expression of collagen Q in the soleus muscle is maintained by its tonic nerve-induced activation pattern via the activated Ca2+-calcineurin signaling pathway. The extrajunctional collagen Q expression in fast muscles is independent of muscle activation pattern and seems irreversibly suppressed. The junctional expression of collagen Q in fast muscles is partly nerve-dependent, but does not encompass the Ca2+-calcineurin signaling pathway.  相似文献   
92.
In this study, microcosms were used to investigate the influence of temperature (4 and 28 degrees C) and water content (45% and 90% WHC) on microbial communities and activities in carbon-rich fen soil. Bacterial, archaeal and denitrifier community composition was assessed during incubation of microcosms for 12 weeks using terminal restriction fragment length polymorphism (T-RFLP) profiling of 16S rRNA and nitrous oxide reductase (nosZ) genes. In addition, microbial and denitrifier abundance, potential denitrification activity and production of greenhouse gases were measured. No detectable changes were observed in prokaryote or denitrifier abundance. In general, cumulatively after 12 weeks more carbon was respired at the higher temperature (3.7 mg CO(2) g(-1) soil), irrespective of the water content, whereas nitrous oxide production was greater under wet conditions (98-336 microg N(2)O g(-1) soil). After an initial lag phase, methane emissions (963 microg CH(4) g(-1) soil) were observed only under warm and wet conditions. T-RFLP analyses of bacterial 16S rRNA and nosZ genes revealed small or undetectable community changes in response to temperature and water content, suggesting that bacterial and denitrifying microbial communities are stable and do not respond significantly to seasonal changes in soil conditions. In contrast, archaeal microbial community structure was more dynamic and was strongly influenced by temperature.  相似文献   
93.
94.
Conformational properties of trimeric and tetrameric 2′,5′-linked oligonucleotides, 3′-MOE-A32′,5′ (1) and 3′-MOE-A42′,5′ (2), and their 3′,5′-linked analogs, 2′-MOE-A33′,5′ (3) and 2′-MOE-A43′,5′ (4), were examined with the use of heteronuclear NMR spectroscopy. The temperature-dependent 3JHH, 3JHP and 3JCP coupling constants, acquired in the range of 273–343 K, gave insight into the conformation of sugar rings in terms of a two-state North ↔ South (N ↔ S) pseudorotational equilibrium and into the conformation of the sugar–phosphate backbone in the model antisense oligonucleotides 1–4. 2′,5′-linked oligomers 3′-MOE-A32′,5′ (1) and 3′-MOE-A42′,5′ (2) show preference for N-type conformers and indication of A-type conformational features, which is prerequisite for antisense hybridization. The drive of N ↔ S equilibrium in 1–4 has been rationalized with the competing gauche effects of 2′/3′-phosphodiester and 3′/2′-MOE groups, anomeric and steric effects. Furthermore, the pairwise comparisons of 3′-MOE with 3′-OH and 3′-deoxy 2′,5′-linked adenine trimers emphasized the fine tuning of N ↔ S equilibrium in 3′-MOE-A32′,5′ (1) and 3′-MOE-A42′,5′ (2) by the steric effects of 3′-MOE group and the possibility of water-mediated H-bonds with vicinal phosphodiester functionality. In full correspondence, the drive of N ↔ S equilibrium towards N by 2′-MOE in 3′,5′-linked analogs 2′-MOE-A33′,5′ (3) and 2′-MOE-A43′,5′ (4) is weaker in comparison with 3′-OH group in the corresponding ribo analogs. βt, γ+ and ε rotamers are preferred in both 2′,5′- and in 3′,5′-linked oligonucleotides 1–4.  相似文献   
95.
The reaction between [PtCl(dmso)(en)]Cl (dmso=dimethyl sulfoxide, en=ethylenediamine) and N-(3-pyridyl)-2-(4-(trifluoromethyl)phenyl)diazenecarboxamide (L) was studied using multinuclear NMR spectroscopy. The water-soluble complexes [PtCl(en)(L-N1)](+) (1) and [Pt(en)(L-N1)(2)](2+) (2) were isolated and their reactions with glutathione (GSH) were investigated to assess the oxidation properties of coordinated L. Both species 1 and 2 oxidized GSH to GSSG, while the reduced form of L (semicarbazide, SL) remained coordinated to Pt(2+). In complex 1 the labile chloride ion was substituted by the thiol moiety of GSH, which gave rise to the release of en in excess GSH over a period of 7 days. Complexes [PtCl(dmso)(en)]Cl, 1, 2 and ligand L were tested against T24 bladder carcinoma cells. Ligand L and complexes 1 and 2 showed higher cytotoxicity than [PtCl(dmso)(en)]Cl.  相似文献   
96.
In order to establish a method to characterize the structural heterogeneity of the bacterial surface, research was conducted with a combination of experiments based on electron paramagnetic resonance (EPR) concentration-imaging (CI) and the modeling of translational diffusion with local restrictions. The benefits and drawbacks of this approach are discussed for the Vibrio sp. exopolysaccharide (EPS) layer.  相似文献   
97.
The subject of this article is the state of a benign bone disease. The principle aim of this study is the construction of a statistical model for estimating the otherwise unobservable variable for the state of the disease. The distribution of intensity of X-ray images of the affected part and the healthy part of the bone are evaluated. Quantiles of both distributions are used in the estimation of a multinomial logit model by which the variable for the state of the disease is quantified.  相似文献   
98.
Osmotic shock treatment of 3T3-L1 adipocytes causes an increase in glucose transport activity and translocation of GLUT4 protein similar to that elicited by insulin treatment. Insulin stimulation of GLUT4 translocation and glucose transport activity was completely inhibited by wortmannin, however, activation by osmotic shock was only partially blocked. Additionally, we have found that the newly identified insulin receptor substrate Gab-1 (Grb2-associated binder-1) is tyrosine-phosphorylated following sorbitol stimulation. Treatment of cells with the tyrosine kinase inhibitor genistein inhibited osmotic shock-stimulated Gab-1 phosphorylation as well as shock-induced glucose transport. Furthermore, pretreatment with the selective Src family kinase inhibitor PP2 completely inhibited the ability of sorbitol treatment to cause tyrosine phosphorylation of Gab-1. We have also shown that microinjection of anti-Gab-1 antibody inhibits osmotic shock-induced GLUT4 translocation. Furthermore, phosphorylated Gab-1 binds and activates phosphatidylinositol 3-kinase (PI3K) in response to osmotic shock. The PI3K activity associated with Gab-1 was 82% of that associated with anti-phosphotyrosine antibodies, indicating that Gab-1 is the major site for PI3K recruitment following osmotic shock stimulation. Although wortmannin only causes a partial block of osmotic shock-stimulated glucose uptake, wortmannin completely abolishes Gab-1 associated PI3K activity. This suggests that other tyrosine kinase-dependent pathways, in addition to the Gab-1-PI3K pathway, contribute to osmotic shock-mediated glucose transport. To date, Gab-1 is the first protein identified as a member of the osmotic shock signal transduction pathway.  相似文献   
99.
The aim of the study was to analyze the impact of special programmed physical education including dance, aerobics and rhythmic gymnastics on the development of motor and functional abilities and morphological characteristics of female fourth-grade high-schoolers in Zagreb. A total sample of 220 high-schoolers aged 16-18 years were divided into two groups: experimental group of 115 students attending the program composed of dance structures and aerobics, and control group of 105 students attending classic program of physical education. A set of 3 morphological variables, 6 motor variables and one functional variable were applied in both groups on three occasions during an academic year (initial, transient and final measurements). Two-factor analysis of variance (MANOVA repeated measure design) showed the experimental program to significantly influence the development of coordination/agility and specific rhythm coordination, functional aerobic ability, repetitive and explosive strength and flexibility, along with significant reduction of overweight and adipose tissue. Study results clearly indicate that the existing programs of physical education should be revised and replaced by more appropriate ones.  相似文献   
100.
A prolonged expansion of GGGGCC repeat within non-coding region of C9orf72 gene has been identified as the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which are devastating neurodegenerative disorders. Formation of unusual secondary structures within expanded GGGGCC repeat, including DNA and RNA G-quadruplexes and R-loops was proposed to drive ALS and FTD pathogenesis. Initial NMR investigation on DNA oligonucleotides with four repeat units as the shortest model with the ability to form an unimolecular G-quadruplex indicated their folding into multiple G-quadruplex structures in the presence of K+ ions. Single dG to 8Br-dG substitution at position 21 in oligonucleotide d[(G4C2)3G4] and careful optimization of folding conditions enabled formation of mostly a single G-quadruplex species, which enabled determination of a high-resolution structure with NMR. G-quadruplex structure adopted by d[(G4C2)3GGBrGG] is composed of four G-quartets, which are connected by three edgewise C-C loops. All four strands adopt antiparallel orientation to one another and have alternating syn-anti progression of glycosidic conformation of guanine residues. One of the cytosines in every loop is stacked upon the G-quartet contributing to a very compact and stable structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号