首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96983篇
  免费   714篇
  国内免费   894篇
  98591篇
  2022年   37篇
  2021年   49篇
  2020年   41篇
  2019年   50篇
  2018年   11883篇
  2017年   10712篇
  2016年   7507篇
  2015年   706篇
  2014年   412篇
  2013年   466篇
  2012年   4402篇
  2011年   13004篇
  2010年   12128篇
  2009年   8335篇
  2008年   9937篇
  2007年   11553篇
  2006年   421篇
  2005年   623篇
  2004年   1107篇
  2003年   1156篇
  2002年   917篇
  2001年   374篇
  2000年   293篇
  1999年   129篇
  1998年   63篇
  1997年   50篇
  1996年   62篇
  1995年   58篇
  1994年   35篇
  1993年   70篇
  1992年   91篇
  1991年   100篇
  1990年   76篇
  1989年   76篇
  1988年   78篇
  1987年   77篇
  1986年   52篇
  1985年   47篇
  1984年   50篇
  1983年   69篇
  1982年   36篇
  1981年   37篇
  1979年   47篇
  1977年   37篇
  1976年   39篇
  1975年   49篇
  1973年   37篇
  1972年   267篇
  1971年   310篇
  1970年   40篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
92.
SEVERAL procedures have been described recently which produce specific patterns of differential staining in human chromosomes1–9. Techniques which involve DNA denaturation and reannealing reveal deeply stained areas on centromere and secondary constriction regions which have been equated with constitutive heterochromatin9.  相似文献   
93.
The biochemical mechanisms underlying thidiazuron (TDZ)-induced regeneration in plant cells have not been clearly elucidated. Exposure of leaf explants of Echinacea purpurea to a medium containing TDZ results in undifferentiated cell proliferation and differentiated growth as mixed shoot organogenesis and somatic embryogenesis. The current studies were undertaken to determine the potential roles of auxin, indoleamines, and ion signaling in the dedifferentiation and redifferentiation of plant cells. E. purpurea leaf explants were found to contain auxin and the related indoleamine neurotransmitters, melatonin, and serotonin. The levels of these endogenous indoleamines were increased by exposure to TDZ associated with the induction of regeneration. The auxin-transport inhibitor 2,3,5-triiodobenzoic acid and auxin action inhibitor, p-chlorophenoxyisobutyric acid decreased the TDZ-induced regeneration but increased concentrations of endogenous serotonin and melatonin. As well, inhibitors of calcium and sodium transport significantly reduced TDZ-induced morphogenesis while increasing endogenous indoleamine content. These data indicate that TDZ-induced regeneration is the manifestation of a metabolic cascade that includes an initial signaling event, accumulation, and transport of endogenous plant signals such as auxin and melatonin, a system of secondary messengers, and a concurrent stress response.  相似文献   
94.
95.
The limited population sizes used in many quantitative trait locus (QTL) detection experiments can lead to underestimation of QTL number, overestimation of QTL effects, and failure to quantify QTL interactions. We used the barley/barley stripe rust pathosystem to evaluate the effect of population size on the estimation of QTL parameters. We generated a large (n=409) population of doubled haploid lines derived from the cross of two inbred lines, BCD47 and Baronesse. This population was evaluated for barley stripe rust severity in the Toluca Valley, Mexico, and in Washington State, USA, under field conditions. BCD47 was the principal donor of resistance QTL alleles, but the susceptible parent also contributed some resistance alleles. The major QTL, located on the long arm of chromosome 4H, close to the Mlo gene, accounted for up to 34% of the phenotypic variance. Subpopulations of different sizes were generated using three methods—resampling, selective genotyping, and selective phenotyping—to evaluate the effect of population size on the estimation of QTL parameters. In all cases, the number of QTL detected increased with population size. QTL with large effects were detected even in small populations, but QTL with small effects were detected only by increasing population size. Selective genotyping and/or selective phenotyping approaches could be effective strategies for reducing the costs associated with conducting QTL analysis in large populations. The method of choice will depend on the relative costs of genotyping versus phenotyping. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
96.
It is generally expected that, in environments with pronounced seasonal resource peaks, birds’ reproductive success will be maximised when nestlings’ peak food demand coincides with the timing of high food availability. However in certain birds that stay resident over winter, earlier breeding leads juveniles to join the winter flock earlier, which by the prior residence effect increases their success in breeding territory competition. This trade-off between reproduction and competition may explain why, in certain species, breeding phenology is earlier and asynchronous with the resource. This study extends a previous model of the evolution of breeding phenology in a single habitat type to a landscape with two habitat types: ‘early’ and ‘late’ resource phenology. The offspring’s natal habitat type has a carryover effect upon their competitive ability regardless of which habitat type they settle in to potentially breed. We find that, when the difference in resource phenology between habitats is small (weak carryover effect), breeding phenology in the late habitat evolves to occur earlier and more asynchronously than in the early habitat, to compensate for the competitive disadvantage to juveniles raised there. However if the difference is large (strong carryover effect), then the reproductive cost of earlier breeding outweighs the benefit of the compensation, so instead breeding phenology in the late habitat evolves to become more synchronous with the resource. Recruitment is generally asymmetric, from early to late habitat type. However if the early habitat is less frequent in the landscape or produces fewer offspring, then the asymmetry is reduced, and if there is some natal habitat-type fidelity, then recruitment can have an insular pattern, i.e. most recruits to each habitat type come from that same habitat type. We detail the different scenarios in which the different recruitment patterns are predicted, and we propose that they have implications for local adaptation.  相似文献   
97.
Ravenelia esculenta Naras. and Thirum. is a rust, pathogenic to Acacia eburnea Willd. The infection leads to hypertrophy changing the morphology with bizarre shapes of plant organs. Healthy and infected tissues were subjected to extraction of IAA and indole derivatives and were estimated by spectrophotometric methods. The hypertrophy produced was presumed to be due to increase in the indole-3-acetic acid (IAA) content in the infected tissue, however, the amount of IAA in infected tissues decreased with the progression of disease. Concomitantly, the infected tissue showed the presence of a novel, slow migrating, indole derivative on TLC. Cultured shoot tips of Withania somnifera were dosed with the methanolic extract of the infected hypertrophied tissue (MEHT) (0.25, 0.5, 0.75, 1.00 and 1.25 mg/l). The stimulation in shoot growth along with profuse rooting was observed in a dose dependent manner with maximum at 1.00 and 1.25 mg/l concentration.  相似文献   
98.
We have developed a one-dimensional tumour simulator to describe the biodistribution of chemotherapeutic drugs to a tumoral lesion and the tumour cell’s response to therapy. A three-compartment model is used for drug dynamics within the tumour. The first compartment represents the extracellular space in which cells move, the second corresponds to the intracellular fluid space (including cell membrane) which is in direct equilibrium with the extracellular space, and the third is a non-exchangeable compartment that represents sequestered drug which is trapped in the nucleus to damage the cellular DNA, directly triggering cell death. Analytical and numerical techniques (Finite Element Method) are used to describe the tumour’s response to therapy and the effect of parameter variation on the drug concentration profiles in the three compartments.  相似文献   
99.
The phylogenetic diversity of microorganisms living at high salt concentrations is surprising. Halophiles are found in each of the three domains: Archaea, Bacteria, and Eucarya. The metabolic diversity of halophiles is great as well: they include oxygenic and anoxygenic phototrophs, aerobic heterotrophs, fermenters, denitrifiers, sulfate reducers, and methanogens. The diversity of metabolic types encountered decreases with salinity. The upper salinity limit at which each dissimilatory process takes place is correlated with the amount of energy generated and the energetic cost of osmotic adaptation. Our understanding of the biodiversity in salt-saturated environments has increased greatly in recent years. Using a combination of culture techniques, molecular biological methods, and chemotaxonomic studies, we have obtained information on the nature of the halophilic Archaea as well as the halophilic Bacteria that inhabit saltern crystallizer ponds. Several halophilic microorganisms are being exploited in biotechnology. In some cases, such as the production of ectoine, the product is directly related to the halophilic behavior of the producing microorganism. In other cases, such as the extraction of β-carotene from Dunaliella or the potential use of Haloferax species for the production of poly-β-hydroxyalkanoate or extracellular polysaccharides, similar products can be obtained from non-halophiles, but halophilic microorganisms may present advantages over the use of non-halophilic counterparts. Journal of Industrial Microbiology & Biotechnology (2002) 28, 56–63 DOI: 10.1038/sj/jim/7000176 Received 20 May 2001/ Accepted in revised form 20 June 2001  相似文献   
100.
Chloroplasts are believed to be descendants of ancestral cyanobacteria that had peptidoglycan layer between the outer and the inner membranes. Historically, the glaucophyte Cyanophora paradoxa and the rhizopod Paulinella chromatophora were believed to harbor symbiotic cyanobacteria having peptidoglycan, which were conventionally named “cyanelles”. In addition, the complete set of genes involved in the synthesis of peptidoglycan has been found in the moss Physcomitrella patens and some plants and algae. The presence of peptidoglycan-like structures was demonstrated by a new metabolic labeling technique in P. patens. However, many green algae and all known red algae lack peptidoglycan-related genes. That is the reason why we questioned the origin of peptidoglycan-synthesizing enzymes in the chloroplasts of the green algae and plants. We performed phylogenetic analysis of ten enzymes involved in the synthesis of peptidoglycan exploiting the Gclust homolog clusters and additional genomic data. As expected, all the identified genes encoded in the chromatophore genome of P. chromatophora were closely related to cyanobacterial homologs. In the green algae and plants, only two genes, murA and mraY, were found to be closely related to cyanobacterial homologs. The origins of all other genes were diverse. Unfortunately, the origins of C. paradoxa genes were not clearly determined because of incompleteness of published genomic data. We discuss on the probable evolutionary scenarios to explain the mostly non-cyanobacterial origins of the biosynthetic enzymes of chloroplast peptidoglycan: A plausible one includes extensive multiple horizontal gene transfers during the early evolution of Viridiplantae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号