首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35947篇
  免费   16665篇
  国内免费   5篇
  52617篇
  2022年   149篇
  2021年   511篇
  2020年   2269篇
  2019年   3812篇
  2018年   3934篇
  2017年   4187篇
  2016年   4252篇
  2015年   4313篇
  2014年   3994篇
  2013年   4521篇
  2012年   2326篇
  2011年   2040篇
  2010年   3381篇
  2009年   2115篇
  2008年   1153篇
  2007年   783篇
  2006年   703篇
  2005年   760篇
  2004年   719篇
  2003年   734篇
  2002年   699篇
  2001年   533篇
  2000年   427篇
  1999年   362篇
  1998年   171篇
  1997年   142篇
  1996年   129篇
  1995年   102篇
  1994年   132篇
  1993年   102篇
  1992年   197篇
  1991年   164篇
  1990年   136篇
  1989年   182篇
  1988年   145篇
  1987年   161篇
  1986年   128篇
  1985年   144篇
  1984年   116篇
  1983年   119篇
  1982年   84篇
  1981年   103篇
  1980年   100篇
  1979年   122篇
  1978年   90篇
  1977年   106篇
  1976年   86篇
  1975年   78篇
  1974年   66篇
  1973年   80篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non‐treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non‐treadmill and the treadmill analyses become nonsignificant. The co‐occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components.  相似文献   
992.
In the 1990s during wet seasons a new disease causing brown leaf spots on lettuce (Lactuca sativa) was found for the first time in many lettuce‐growing areas of Austria and Germany. The causal agent, a new pathogenic species called Septoria birgitae, may be responsible for total crop loss. To study how temperature, inoculum density and leaf wetness period influence disease incidence and severity of leaf spot on lettuce caused by S. birgitae, we carried out in vivo experiments in growth chambers and in the field. Additionally, we evaluated the relevance of infected plant debris acting as a primary inoculum source in soil for subsequent crops. S. birgitae produces spores over a wide temperature range between 5°C and 30°C, and can infect plants at temperatures between 10°C and 30°C, with an optimum between 20°C and 30°C. Spores of S. birgitae at a density of at least 103 conidia mL–1 are essential for disease outbreak on lettuce. Because leaf wetness is crucial for releasing conidia from pycnidia, we studied the impact of leaf wetness duration on disease development under various temperature conditions. For relevant leaf spot disease development on lettuce in vivo, a leaf wetness duration of at least 24 h and temperatures higher than 10°C were necessary. Leaf spot disease development in the field required several leaf wetness periods longer than 20 h at approximately 15°C at the beginning of crop cultivation. Incorporating S. birgitae infected plant debris in soil as a primary inoculum was not relevant for leaf spot disease outbreak in the next year. However, in cases of continuous cropping of lettuce on the same field and in the same season, Septoria‐infected lettuce debris may become more relevant.  相似文献   
993.
Phytoplasmas are phloem‐inhabiting, cell wall‐less bacteria that cause numerous plant diseases worldwide. Plants infected by phytoplasmas often exhibit various symptoms indicative of hormonal imbalance. In this study, we investigated the effects of potato purple top (PPT) phytoplasma infection on gibberellin homeostasis in tomato plants. We found that PPT phytoplasma infection caused a significant reduction in endogenous levels of gibberellic acid (GA3). The decrease in GA3 content in diseased plants was correlated with down regulation of genes responsible for biosynthesis of bioactive GAs ( GA20ox1 and GA3ox1) and genes involved in formation of GA precursors [geranyl diphosphate synthase (GPS) and copalyldiphosphate synthase (CPS)]. Exogenous application of GA3 at 200 µmol L?1 was able to restore the GA content in infected plants to levels comparable to those in healthy controls, and to attenuate the characteristic ‘big bud’ symptoms induced by the phytoplasma. The interesting observation that PPT phytoplasma‐infected plants had prolonged low expression of key GA biosynthesis genes GA20ox1 and GA3ox1 under GA deficiency conditions led us to hypothesise that there was a diminished sensitivity of the GA metabolism feedback regulation, especially GA biosynthesis negative feedback regulation, in those affected plants, and such diminished sensitization in early stages of infection may represent a central element of the phytoplasma‐induced disruption of GA homeostasis and pathogenesis.  相似文献   
994.
Historical evidence documents mass migration from Ireland to London during the period of the Great Irish Famine of 1845–52. The rural Irish were reliant on a restricted diet based on potatoes but maize, a C4 plant, was imported from the United States of America in 1846–47 to mitigate against Famine. In London, Irish migrants joined a population with a more varied diet. To investigate and characterize their diet, carbon and nitrogen isotope ratios were obtained from bone collagen of 119 and hair keratin of six individuals from Lukin Street cemetery, Tower Hamlets (1843–54), and bone collagen of 20 individuals from the cemetery at Kilkenny Union Workhouse in Ireland (1847–51). A comparison of the results with other contemporaneous English populations suggests that Londoners may have elevated δ15N compared with their contemporaries in other cities. In comparison, the Irish group have lower δ15N. Hair analysis combined with bone collagen allows the reconstruction of perimortem dietary changes. Three children aged 5–15 years from Kilkenny have bone collagen δ13C values that indicate consumption of maize (C4). As maize was only imported into Ireland in quantity from late 1846 and 1847, these results demonstrate relatively rapid bone collagen turnover in children and highlight the importance of age‐related bone turnover rates, and the impact the age of the individual can have on studies of short‐term dietary change or recent migration. Stable light isotope data in this study are consistent with the epigraphic and documentary evidence for the presence of migrants within the London cemetery. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
995.
Increasing contamination of soil and groundwater with benzene, toluene, and xylene (BTX) due to activities of the chemical and oil refinery industry has caused serious environmental damage. Efficient methods are required to isolate and degrade them. Microorganisms associated with rhizosphere soil are considered efficient agents to remediate hydrocarbon contamination. In this study, we obtained a stabilized bacterial consortium from the rhizosphere soil of Cyperus sp. grown in a petroleum-contaminated field in Southern Mexico. This consortium was able to completely degrade BTX in 14 days. Bacteria isolated from the consortium were identified by 16S rRNA gene sequence analysis as Ralstonia insidiosa, Cellulomonas hominis, Burkholderia kururiensis, and Serratia marcescens. The BTX-degradation capacity of the bacterial consortium was confirmed by the detection of genes pheA, todC1, and xylM, which encoded phenol hydroxylase, toluene 1,2-dioxygenase, and xylene monooxygenase, respectively. Our results demonstrate feasibility of BTX biodegradation by indigenous bacteria that might be used for soil remediation in Southern Mexico.  相似文献   
996.
997.
Pollen morphology of 58 species from 17 putative genera of the tribe Atripliceae (Chenopodiaceae) was investigated using light (LM) and scanning electron microscopy (SEM). Morphological variation was analyzed based on a dense sampling of the subtribes Atriplicinae and Eurotiinae, including many of the species in the two largest genera: Atriplex and Obione. The pantoporate pollen grains of Atripliceae are characterized by their spheroidal or subspheroidal shape, flat or moderately vaulted mesoporia with 21–120 pores, tectum with 1–8 spinules and 5–28(?38) puncta per?µm2, and 1–13 ectexinous bodies bearing 1–7 spinules each. Taxonomic relevance of the most important pollen morphological characters is discussed (pollen diameter, pore number, pore diameter, interporal distance, spinule and puncta density and ratio, number of ectexinous bodies, and their spinules). Pollen morphological data support the exclusion of Suckleya from the tribe and the recognition of subtribe Eurotiinae, but suggest that it needs to be reviewed. Pollen does not support generic recognition of Atriplex, Neopreissia and Obione and infrageneric subdivisions as currently recognized, and suggests the need to review them. Smaller or monotypic genera, such as Axyris, Ceratocarpus, Endolepis, Krascheninnikovia, Microgynoecium, Proatriplex and Spinacia have distinctive pollen morphological characters that support their generic status. Grayia needs to be reevaluated; although its two species are distinct from all the other species in the study, there are notable differences between each of them, and this suggests they may not form a natural group. Multivariate techniques were employed to investigate if there are discrete patterns of variation within Atripliceae. Principal Component Analyses (PCA) weakly differentiates four groups based on variation in pore number, puncta density per?µm2, and ratio between spinule and puncta density per?µm2; species of Ceratocarpus, Haloxanthium, Krascheninnikovia, Manochlamys, Microgynoecium, Spinacia, and some species of Atriplex and Obione are isolated. Preliminary results indicate that pollen data are potentially useful in the classification of the tribe, and further studies will be of taxonomic value.  相似文献   
998.
Although exposure to airborne pollen grains and fungal spores has been implicated as a causative factor for acute exacerbation of asthma, the few epidemiologic studies that have attempted to evaluate the relationship between these bioaerosols and asthma have used only total counts (ignoring the relative importance of different taxa) or a few predominant pollen or spore types (ignoring less abundant but potentially relevant groups). This paper reports the development of hypothesis‐driven exposure metrics (based on known aeroallergen associations with allergic asthma and other hypersensitivity diseases, pollen allergen cross‐reactivity, and the presence of local sources in the city of Fresno, California, USA) for a 3.5 year epidemiologic study of childhood asthma. Outdoor regional and neighborhood concentrations of pollen and spores were measured using Hirst‐type, 7‐day samplers. Indoor and outdoor residential concentrations were measured at 84 selected homes with similar 24‐hour slit impactors. All pollen and spore concentrations were recorded in 2‐hour intervals to assist in understanding diurnal fluctuations in aeroallergen concentrations, identify exposures during the time periods that children are outdoors, and study interaction between aeroallergens and other air contaminants, which were the primary focus of the study. The 124 pollen taxa that were observed were reduced to 15 categories and the 66 fungal and algal taxa were reduced to five categories that will be used in microenvironmental models to generate individual daily exposure estimates for each of the 315 children. These new exposure metrics will allow examination of health effects for taxa traditionally associated with allergy and those with locally elevated concentrations in combination with exposures to other indoor and outdoor air contaminants.  相似文献   
999.
Understanding how survival is affected by the environment is essential to gain insight into population dynamics and the evolution of life‐history traits as well as to identify environmental selection pressures. However, we still have little understanding of the relative effect of different environmental factors and their interactions on demographic traits and population dynamics. Here we used two long‐term, individual‐based datasets on Tawny Owl Strix aluco (1981–2010) and Ural Owl S. uralensis (1986–2010) to undertake capture‐mark‐recapture analysis of annual survival of adult females in response to three biologically meaningful environmental variables and their two‐way interactions. Despite the similar ecology of these two species, their survival was associated with different and uncorrelated environmental drivers. The main correlate of Tawny Owl survival was an inverse association with snow depth (winter severity). For Ural Owl, high food (vole) abundance improved survival during years with deep snow, but was less important during years with little snow. In addition, Ural Owl survival was strongly density‐dependent, whereas Tawny Owl survival was not. Our findings advise caution in extrapolating demographic inferences from one species to another, even when they are very closely related and ecologically similar. Analyses including only one or few potential environmental drivers of a species' survival may lead to incomplete conclusions because survival may be affected by several factors and their interactions.  相似文献   
1000.
The life cycle of higher plants alternates between the diploid sporophytic and the haploid gametophytic phases. In angiosperms, male and female gametophytes develop within the sporophyte. During female gametophyte (FG) development, a single archesporial cell enlarges and differentiates into a megaspore mother cell, which then undergoes meiosis to give rise to four megaspores. In most species of higher plants, including Arabidopsis thaliana, the megaspore closest to the chalaza develops into the functional megaspore (FM), and the remaining three megaspores degenerate. Here, we examined the role of cytokinin signaling in FG development. We characterized the FG phenotype in three triple mutants harboring non‐overlapping T–DNA insertions in cytokinin AHK receptors. We demonstrate that even the strongest mutant is not a complete null for the cytokinin receptors. Only the strongest mutant displayed a near fully penetrant disruption of FG development, and the weakest triple ahk mutant had only a modest FG phenotype. This suggests that cytokinin signaling is essential for FG development, but that only a low threshold of signaling activity is required for this function. Furthermore, we demonstrate that there is elevated cytokinin signaling localized in the chalaza of the ovule, which is enhanced by the asymmetric localization of cytokinin biosynthetic machinery and receptors. We show that an FM‐specific marker is absent in the multiple ahk ovules, suggesting that disruption of cytokinin signaling elements in Arabidopsis blocks the FM specification. Together, this study reveals a chalazal‐localized sporophytic cytokinin signal that plays an important role in FM specification in FG development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号