首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4605篇
  免费   484篇
  国内免费   1篇
  2022年   25篇
  2021年   59篇
  2020年   45篇
  2019年   49篇
  2018年   48篇
  2017年   55篇
  2016年   101篇
  2015年   184篇
  2014年   203篇
  2013年   245篇
  2012年   320篇
  2011年   301篇
  2010年   197篇
  2009年   184篇
  2008年   260篇
  2007年   331篇
  2006年   265篇
  2005年   255篇
  2004年   256篇
  2003年   260篇
  2002年   227篇
  2001年   57篇
  2000年   30篇
  1999年   54篇
  1998年   72篇
  1997年   68篇
  1996年   55篇
  1995年   40篇
  1994年   63篇
  1993年   40篇
  1992年   43篇
  1991年   24篇
  1990年   31篇
  1989年   37篇
  1988年   34篇
  1987年   38篇
  1986年   22篇
  1985年   28篇
  1984年   44篇
  1983年   38篇
  1982年   23篇
  1981年   41篇
  1980年   35篇
  1979年   22篇
  1978年   22篇
  1977年   26篇
  1976年   19篇
  1975年   17篇
  1973年   22篇
  1970年   22篇
排序方式: 共有5090条查询结果,搜索用时 15 毫秒
141.
Plants provide resources and shape the habitat of soil organisms thereby affecting the composition and functioning of soil communities. Effects of plants on soil communities are largely taxon‐dependent, but how different functional groups of herbaceous plants affect trophic niches of individual animal species in soil needs further investigation. Here, we studied the use of basal resources and trophic levels of dominating soil meso‐ and macrofauna using stable isotope ratios of carbon and nitrogen in arable fallow systems 3 and 14–16 years after abandonment. Animals were sampled from the rhizosphere of three plant species of different functional groups: a legume (Medicaco sativa), a nonlegume herb (Taraxacum officinale), and a grass (Bromus sterilis). We found virtually no consistent effects of plant identity on stable isotope composition of soil animals and on thirteen isotopic metrics that reflect general food‐web structure. However, in old fallows, the carbon isotope composition of some predatory macrofauna taxa had shifted closer to that of co‐occurring plants, which was particularly evident for Lasius, an aphid‐associated ant genus. Trophic levels and trophic‐chain lengths in food webs were similar across plant species and fallow ages. Overall, the results suggest that variations in local plant diversity of grassland communities may little affect the basal resources and the trophic level of prey consumed by individual species of meso‐ and macrofauna belowground. By contrast, successional changes in grassland communities are associated with shifts in the trophic niches of certain species, reflecting establishment of trophic interactions with time, which shapes the functioning and stability of soil food webs.  相似文献   
142.
Toll‐like receptor 4 (TLR4) is a highly conserved protein of innate immunity, responsible for the regulation and maintenance of homeostasis, as well as immune recognition of external and internal ligands. TLR4 is expressed on a variety of cell types throughout the gastrointestinal tract, including on epithelial and immune cell populations. In a healthy state, epithelial cell expression of TLR4 greatly assists in homeostasis by shaping the host microbiome, promoting immunoglobulin A production, and regulating follicle‐associated epithelium permeability. In contrast, immune cell expression of TLR4 in healthy states is primarily centred on the maturation of dendritic cells in response to stimuli, as well as adequately priming the adaptive immune system to fight infection and promote immune memory. Hence, in a healthy state, there is a clear distinction in the site‐specific roles of TLR4 expression. Similarly, recent research has indicated the importance of site‐specific TLR4 expression in inflammation and disease, particularly the impact of epithelial‐specific TLR4 on disease progression. However, the majority of evidence still remains ambiguous for cell‐specific observations, with many studies failing to provide the distinction of epithelial versus immune cell expression of TLR4, preventing specific mechanistic insight and greatly impacting the translation of results. The following review provides a critical overview of the current understanding of site‐specific TLR4 activity and its contribution to intestinal/immune homeostasis and inflammatory diseases.  相似文献   
143.
Wildlife models focused solely on a single strong influence (e.g., habitat components, wildlife harvest) are limited in their ability to detect key mechanisms influencing population change. Instead, we propose integrated modeling in the context of cumulative effects assessment using multispecies population dynamics models linked to landscape-climate simulation at large spatial and temporal scales. We developed an integrated landscape and population simulation model using ALCES Online as the model-building platform, and the model accounted for key ecological components and relationships among moose (Alces alces), grey wolves (Canis lupus nubilus), and woodland caribou (Rangifer tarandus caribou) in northern Ontario, Canada. We simulated multiple scenarios over 5 decades (beginning 2020) to explore sensitivity to climate change and land use and assessed effects at multiple scales. The magnitude of effect and the relative importance of key factors (climate change, roads, and habitat) differed depending on the scale of assessment. Across the full extent of the study area (654,311km2 [ecozonal scale]), the caribou population declined by 26% largely because of climate change and associated predator-prey response, which led to caribou range recession in the southern part of the study area. At the caribou range scale (108,378 km2), which focused on 2 herds in the northern part of the study area, climate change led to a 10% decline in the population and development led to an additional 7% decline. At the project scale (8,331 km2), which was focused more narrowly on the landscape surrounding 4 proposed mines, the caribou population declined by 29% largely in response to simulated development. Given that observed caribou population dynamics were sensitive to the cumulative effects of climate change, land use, interspecific interactions, and scale, insights from the analysis might not emerge under a less complex model. Our integrated modeling framework provides valuable support for broader regional assessments, including estimation of risk to caribou and Indigenous food security, and for developing and evaluating potential caribou recovery strategies. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   
144.
145.
146.
The toxicity of the nitric oxide donor S-nitrosoglutathione (GSNO) was tested on the Drosophila melanogaster model system. Fly larvae were raised on food supplemented with GSNO at concentrations of 1.0, 1.5 or 4.0 mM. Food supplementation with GSNO caused a developmental delay in the flies. Biochemical analyses of oxidative stress markers and activities of antioxidant and associated enzymes were carried out on 2-day-old flies that emerged from control larvae and larvae fed on food supplemented with GSNO. Larval exposure to GSNO resulted in lower activities of aconitase in both sexes and also lower activities of catalase and isocitrate dehydrogenase in adult males relative to the control cohort. Larval treatment with GSNO resulted in higher carbonyl protein content and higher activities of glucose-6-phosphate dehydrogenase in males and higher activities of superoxide dismutase and glutathione-S-transferase in both sexes. Among the parameters tested, aconitase activity and developmental end points may be useful early indicators of toxicity caused by GSNO.  相似文献   
147.

Background

Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya.

Methods

Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates.

Results

Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR?=?0.94, 95% CI 0.90–0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010.

Conclusion

Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.  相似文献   
148.

Introduction

Our objective was to determine the interrelationships of interleukin (IL)-6 receptor inhibition with haemoglobin, acute-phase reactants and iron metabolism markers (including hepcidin) in patients with rheumatoid arthritis (RA).

Methods

Data of patients receiving tocilizumab or placebo in the MEASURE study were analysed. We investigated associations at baseline and during tocilizumab treatment among haemoglobin, parameters of haemoglobin and iron homeostasis [ferritin, total iron-binding capacity (TIBC), hepcidin, haptoglobin], IL-6 and acute-phase reactants [C-reactive protein (CRP), erythrocyte sedimentation rate (ESR)] to identify statistical correlates of rise in haemoglobin level.

Results

At baseline, CRP and haptoglobin were inversely correlated (modestly) with haemoglobin levels. After treatment with tocilizumab, CRP, hepcidin, ferritin and haptoglobin levels fell alongside increases in TIBC and haemoglobin. The falls in CRP, hepcidin and haptoglobin levels in the first 2 weeks correlated with a week 12 rise in TIBC and haemoglobin.

Conclusions

Inflammatory anaemia improves in patients with RA treated with tocilizumab. This improvement correlates with the degree of suppression of systemic inflammation, reduction in hepcidin and haptoglobin and increase in iron-binding capacity. These clinical data provide evidence of a role for IL-6 signalling in the inflammatory anaemia of RA.  相似文献   
149.
150.
Abstract

Purpose: Examine the association between bulky DNA adduct levels in colon mucosa and colorectal adenoma prevalence, and explore the correlation between adduct levels in leukocytes and colon tissue.

Methods: Bulky DNA adduct levels were measured using 32P-postlabelling in biopsies of normal-appearing colon tissue and blood donated by 202 patients. Multivariable logistic regression was used to examine associations between DNA adducts, and interactions of DNA adduct-DNA repair polymorphisms, with the prevalence of colorectal adenomas. Correlation between blood and tissue levels of DNA adducts was evaluated using Spearman’s correlation coefficient.

Results: An interaction between bulky DNA adduct levels and XPA rs1800975 on prevalence of colorectal adenoma was observed. Among individuals with lower DNA repair activity, increased DNA adduct levels were associated with increased colorectal adenoma prevalence (OR?=?1.41 per SD increase, 95%CI: 0.92–2.18). Conversely, among individuals with normal DNA activity, an inverse association was observed (OR?=?0.60 per SD increase, 95%CI: 0.34–1.07). Blood and colon DNA adduct levels were inversely correlated (ρ?=??0.20).

Conclusions: Among genetically susceptible individuals, higher bulky DNA adducts in the colon was associated with the prevalence of colorectal adenomas. The inverse correlation between blood and colon tissue measures demonstrates the importance of quantifying biomarkers in target tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号