全文获取类型
收费全文 | 3794篇 |
免费 | 340篇 |
国内免费 | 2篇 |
专业分类
4136篇 |
出版年
2022年 | 29篇 |
2021年 | 58篇 |
2020年 | 43篇 |
2019年 | 50篇 |
2018年 | 34篇 |
2017年 | 45篇 |
2016年 | 75篇 |
2015年 | 153篇 |
2014年 | 171篇 |
2013年 | 200篇 |
2012年 | 266篇 |
2011年 | 241篇 |
2010年 | 148篇 |
2009年 | 141篇 |
2008年 | 214篇 |
2007年 | 255篇 |
2006年 | 224篇 |
2005年 | 205篇 |
2004年 | 208篇 |
2003年 | 201篇 |
2002年 | 184篇 |
2001年 | 44篇 |
2000年 | 24篇 |
1999年 | 41篇 |
1998年 | 61篇 |
1997年 | 59篇 |
1996年 | 47篇 |
1995年 | 31篇 |
1994年 | 44篇 |
1993年 | 30篇 |
1992年 | 33篇 |
1991年 | 18篇 |
1990年 | 27篇 |
1989年 | 28篇 |
1988年 | 25篇 |
1987年 | 32篇 |
1986年 | 17篇 |
1985年 | 21篇 |
1984年 | 39篇 |
1983年 | 31篇 |
1982年 | 17篇 |
1981年 | 36篇 |
1980年 | 31篇 |
1979年 | 19篇 |
1978年 | 17篇 |
1977年 | 21篇 |
1976年 | 16篇 |
1974年 | 15篇 |
1973年 | 18篇 |
1970年 | 17篇 |
排序方式: 共有4136条查询结果,搜索用时 15 毫秒
61.
Guo Y Weller P Farrell E Cheung P Fitch B Clark D Wu SY Wang J Liao G Zhang Z Allard J Cheng J Nguyen A Jiang S Shafer S Usuka J Masjedizadeh M Peltz G 《Nature biotechnology》2006,24(5):531-536
Pharmacogenetic approaches can be instrumental for predicting individual differences in response to a therapeutic intervention. Here we used a recently developed murine haplotype-based computational method to identify a genetic factor regulating the metabolism of warfarin, a commonly prescribed anticoagulant with a narrow therapeutic index and a large variation in individual dosing. After quantification of warfarin and nine of its metabolites in plasma from 13 inbred mouse strains, we correlated strain-specific differences in 7-hydroxywarfarin accumulation with genetic variation within a chromosomal region encoding cytochrome P450 2C (Cyp2c) enzymes. This computational prediction was experimentally confirmed by showing that the rate-limiting step in biotransformation of warfarin to its 7-hydroxylated metabolite was inhibited by tolbutamide, a Cyp2c isoform-specific substrate, and that this transformation was mediated by expressed recombinant Cyp2c29. We show that genetic variants responsible for interindividual pharmacokinetic differences in drug metabolism can be identified by computational genetic analysis in mice. 相似文献
62.
63.
Wittes J Lachenbruch PA 《Biometrical journal. Biometrische Zeitschrift》2006,48(4):598-603; discussion 613-22
This is a discussion of the following three papers appearing in this special issue on adaptive designs: 'A regulatory view on adaptive/flexible clinical trial design' by H. M. James Hung, Robert T. O'Neill, Sue-Jane Wang and John Lawrence; 'Confirmatory clinical trials with an adaptive design' by Armin Koch; and 'FDA's critical path initiative: A perspective on contributions of biostatistics' by Robert T. O'Neill. 相似文献
64.
Fröhlich O Klein JD Smith PM Sands JM Gunn RB 《American journal of physiology. Cell physiology》2006,291(4):C600-C606
Transepithelial [14C]urea fluxes were measured across cultured Madin-Darby canine kidney (MDCK) cells permanently transfected to express the urea transport protein UT-A1. The urea fluxes were typically increased from a basal rate of 2 to 10 and 25 nmol·cm2·min1 in the presence of vasopressin and forskolin, respectively. Flux activation consisted of a rapid-onset component of small amplitude that leveled off within 10 min and at times even decreased again, followed by a delayed, strong increase over the next 3040 min. Forskolin activated urea transport through activation of adenylyl cyclase; dideoxyforskolin was inactive. Vasopressin activated urea transport only from the basolateral side and was blocked by OPC-31260, indicating that its action was mediated by basolateral V2 receptors. In the presence of the phosphodiesterase inhibitor IBMX, vasopressin activated as strongly as forskolin. By itself, IBMX caused a slow increase over 50 min to 5 nmol·cm2·min1. 8-Bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 300 µM) activated urea flux only when added basolaterally. IBMX augmented the activation by basolateral 8-BrcAMP. Urea flux activation by vasopressin and forskolin were only partially blocked by the protein kinase A inhibitor H-89. Even at concentrations >10 µM, urea flux after 60 min of stimulation was reduced by <50%. The rapid-onset component appeared unaffected by the presence of H-89. These data suggest that activation of transepithelial urea transport across MDCK-UT-A1 cells by forskolin and vasopressin involves cAMP as a second messenger and that it is mediated by one or more signaling pathways separate from and in addition to protein kinase A. urea transporter; Madin-Darby canine kidney cells 相似文献
65.
The response of the gill of Aplysia calfornica Cooper to weak to moderate tactile stimulation of the siphon, the gill-withdrawal response or GWR, has been an important model system for work aimed at understanding the relationship between neural plasticity and simple forms of non-associative and associative learning. Interest in the GWR has been based largely on the hypothesis that the response could be explained adequately by parallel monosynaptic reflex arcs between six parietovisceral ganglion (PVG) gill motor neurons (GMNs) and a cluster of sensory neurons termed the LE cluster. This hypothesis, the Kupfermann-Kandel model, made clear, falsifiable predictions that have stimulated experimental work for many years. Here, we review tests of three predictions of the Kupfermann-Kandel model: (1) that the GWR is a simple, reflexive behaviour graded with stimulus intensity; (2) that central nervous system (CNS) pathways are necessary and sufficient for the GWR; and (3) that activity in six identified GMNs is sufficient to account for the GWR. The available data suggest that (1) a variety of action patterns occur in the context of the GWR; (2) the PVG is not necessary and the diffuse peripheral nervous system (PNS) is sufficient to mediate these action patterns; and (3) the role of any individual GMN in the behaviour varies. Both the control of gill-withdrawal responses, and plasticity in these responses, are broadly distributed across both PNS and CNS pathways. The Kupfermann-Kandel model is inconsistent with the available data and therefore stands rejected. There is, no known causal connection or correlation between the observed plasticity at the identified synapses in this system and behavioural changes during non-associative and associative learning paradigms. Critical examination of these well-studied central pathways suggests that they represent a 'wetware' neural network, architecturally similar to the neural network models of the widely used 'Perceptron' and/or 'Back-propagation' type. Such models may offer a more biologically realistic representation of nervous system organisation than has been thought. In this model, the six parallel GMNs of the CNS correspond to a hidden layer within one module of the gill-control system. That is, the gill-control system appears to be organised as a distributed system with several parallel modules, some of which are neural networks in their own right. A new model is presented here which predicts that the six GMNs serve as components of a 'push-pull' gain control system, along with known but largely unidentified inhibitory motor neurons from the PVG. This 'push-pull' gain control system sets the responsiveness of the peripheral gill motor system. Neither causal nor correlational links between specific forms of neural plasticity and behavioural plasticity have been demonstrated in the GWR model system. However, the GWR model system does provide an opportunity to observe and describe directly the physiological and biochemical mechanisms of distributed representation and parallel processing in a largely identifiable 'wetware' neural network. 相似文献
66.
Curnow SJ Wloka K Faint JM Amft N Cheung CM Savant V Lord J Akbar AN Buckley CD Murray PI Salmon M 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(11):7154-7161
Overexpression of the constitutive chemokine receptor CXCR4 has been shown to contribute to the accumulation of leukocytes at sites of chronic inflammation. Glucocorticoids are widely used to treat inflammatory disorders such as uveitis to considerable effect, yet paradoxically have been reported to increase CXCR4 expression in vitro. We show here that ocular lymphocytes isolated from patients with uveitis who had been treated with topical glucocorticoids expressed highly elevated levels of CXCR4. The up-regulation of CXCR4 could be reproduced in vitro by culture of CD4(+) T cells with aqueous humor (AqH), indicating a role for the ocular microenvironment rather than preferential recruitment of CXCR4(+) cells. Untreated uveitis and noninflammatory AqH up-regulated CXCR4 to a limited extent; this was dependent on TGF-beta2. However, the highest levels of CXCR4 both in vivo and in vitro were found in the glucocorticoid-treated patients. Glucocorticoids appeared to be directly responsible for the induction of CXCR4 in treated patients, as the glucocorticoid receptor antagonist RU38486 inhibited the in vitro up-regulation by AqH from these patients. Dexamethasone selectively up-regulated CXCR4 in vitro, but not any of a wide range of other chemokine receptors. CXCL12, the ligand for CXCR4, was present in AqH under noninflammatory conditions, but the levels were low in untreated uveitis and undetectable in treated uveitis AqH. The importance of these results for the treatment of HIV patients with glucocorticoids is discussed as well as a role for glucocorticoid-induced CXCR4 up-regulation and CXCL12 down-regulation in controlling the migration of lymphocyte populations, resulting in resolution of inflammation. 相似文献
67.
Tokumitsu H Hatano N Inuzuka H Ishikawa Y Uyeda TQ Smith JL Kobayashi R 《The Journal of biological chemistry》2004,279(1):42-50
In this study, we examined the activation mechanism of Dictyostelium myosin light chain kinase A (MLCK-A) using constitutively active Ca2+/calmodulin-dependent protein kinase kinase as a surrogate MLCK-A kinase. MLCK-A was phosphorylated at Thr166 by constitutively active Ca2+/calmodulin-dependent protein kinase kinase, resulting in an approximately 140-fold increase in catalytic activity, using intact Dictyostelium myosin II. Recombinant Dictyostelium myosin II regulatory light chain and Kemptamide were also readily phosphorylated by activated MLCK-A. Mass spectrometry analysis revealed that MLCK-A expressed by Escherichia coli was autophosphorylated at Thr289 and that, subsequent to Thr166 phosphorylation, MLCK-A also underwent a slow rate of autophosphorylation at multiple Ser residues. Using site-directed mutagenesis, we show that autophosphorylation at Thr289 is required for efficient phosphorylation and activation by an upstream kinase. By performing enzyme kinetics analysis on a series of MLCK-A truncation mutants, we found that residues 283-288 function as an autoinhibitory domain and that autoinhibition is fully relieved by Thr166 phosphorylation. Simple removal of this region resulted in a significant increase in the kcat of MLCK-A; however, it did not generate maximum enzymatic activity. Together with the results of our kinetic analysis of the enzymes, these findings demonstrate that Thr166 phosphorylation of MLCK-A by an upstream kinase subsequent to autophosphorylation at Thr289 results in generation of maximum MLCK-A activity through both release of an autoinhibitory domain from its catalytic core and a further increase (15-19-fold) in the kcat of the enzyme. 相似文献
68.
Bacteria act to maintain their hydration when the osmotic pressure of their environment changes. When the external osmolality decreases (osmotic downshift), mechanosensitive channels are activated to release low molecular weight osmolytes (and hence water) from the cytoplasm. Upon osmotic upshift, osmoregulatory transporters are activated to import osmolytes (and hence water). Osmoregulatory channels and transporters sense and respond to osmotic stress via different mechanisms. Mechanosensitive channel MscL senses the increasing tension in the membrane and appears to gate when the lateral pressure in the acyl chain region of the lipids drops below a threshold value. Transporters OpuA, BetP and ProP are activated when increasing external osmolality causes threshold ionic concentrations in excess of about 0.05 M to be reached in the proteoliposome lumen. The threshold activation concentrations for the OpuA transporter are strongly dependent on the fraction of anionic lipids that surround the cytoplasmic face of the protein. The higher the fraction of anionic lipids, the higher the threshold ionic concentrations. A similar trend is observed for the BetP transporter. The lipid dependence of osmotic activation of OpuA and BetP suggests that osmotic signals are transmitted to the protein via interactions between charged osmosensor domains and the ionic headgroups of the lipids in the membrane. The charged, C-terminal domains of BetP and ProP are important for osmosensing. The C-terminal domain of ProP participates in homodimeric coiled-coil formation and it may interact with the membrane lipids and soluble protein ProQ. The activation of ProP by lumenal, macromolecular solutes at constant ionic strength indicates that its structure and activity may also respond to macromolecular crowding. This excluded volume effect may restrict the range over which the osmosensing domain can electrostatically interact. A simplified version of the dissociative double layer theory is used to explain the activation of the transporters by showing how changes in ion concentration could modulate interactions between charged osmosensor domains and charged lipid or protein surfaces. Importantly, the relatively high ionic concentrations at which osmosensors become activated at different surface charge densities compare well with the predicted dependence of 'critical' ion concentrations on surface charge density. The critical ion concentrations represent transitions in Maxwellian ionic distributions at which the surface potential reaches 25.7 mV for monovalent ions. The osmosensing mechanism is qualitatively described as an "ON/OFF switch" representing thermally relaxed and electrostatically locked protein conformations. 相似文献
69.
70.
Adrienne D. Kinkel Melinda E. Fernyhough Deri L. Helterline Janet L. Vierck Karen S. Oberg Tyler J. Vance Gary J. Hausman Rodney A. Hill Michael V. Dodson 《Cytotechnology》2004,46(1):49-56
Bovine adipofibroblasts, 3T3-L1 cells, L-6 myogenic cells, and sheep satellite cells were allowed to proliferate for 48 h. Oil red-O (ORO) was dissolved in three different solvents isopropanol, propylene glycol and triethyl phosphate. At 48 h, the proliferative cultures were stained with the three stains. ORO stain prepared in both propylene glycol and triethyl phosphate resulted in bright red droplets appearing in all cultures, whereas ORO dissolved in isopropanol was not taken up by any of the cells. These data suggest that certain preparations of ORO may stain cells in non-adipogenic lineages as well as undifferentiated pre-adipocytes. Caution must be exercised when choosing solvents for ORO in differentiation studies using cells of the fat/adipose lineage. 相似文献