首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   35篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   13篇
  2015年   24篇
  2014年   15篇
  2013年   23篇
  2012年   36篇
  2011年   26篇
  2010年   11篇
  2009年   19篇
  2008年   34篇
  2007年   22篇
  2006年   22篇
  2005年   8篇
  2004年   22篇
  2003年   17篇
  2002年   12篇
  2001年   5篇
  2000年   2篇
  1999年   7篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1972年   2篇
  1967年   1篇
排序方式: 共有358条查询结果,搜索用时 203 毫秒
51.
We examined a panel of 26 melanoma and fibroblast samples (tissues and cultured cells) to evaluate the suitability of two commonly used housekeeping genes, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 18S ribosomal RNA (rRNA), for quantitative real-time PCR. Both genes showed significant variations within the individual cell line and tissue groups. Although no overall trends were observed in the expression of the 18S rRNA, GAPDH was up-regulated in melanoma tissue and cultured cells compared with the corresponding normal samples. In melanoma and fibroblast cell lines and tissues, absolute quantification appears to be more appropriate than normalizing messenger RNA (mRNA) expression via GAPDH or 18S rRNA housekeeping genes.  相似文献   
52.
Human embryonic stem cells (hESC) are pluripotent, and can be directed to differentiate into different cell types for therapeutic applications. To expand hESCs, it is desirable to maintain hESC growth without differentiation. As hESC colonies grow, differentiated cells are often found at the periphery of the colonies, but the underlying mechanism is not well understood. Here, we utilized micropatterning techniques to pattern circular islands or strips of matrix proteins, and examined the spatial pattern of hESC renewal and differentiation. We found that micropatterned matrix restricted hESC differentiation at colony periphery but allowed hESC growth into multiple layers in the central region, which decreased hESC proliferation and induced hESC differentiation. In undifferentiated hESCs, β-catenin primarily localized at cell-cell junctions but not in the nucleus. The amount of β-catenin in differentiating hESCs at the periphery of colonies or in multiple layers decreased significantly at cell-cell junctions. Consistently, knocking down β-catenin decreased Oct-4 expression in hESCs. These results indicate that localized decrease of β-catenin contributes to the spatial pattern of differentiation in hESC colonies.  相似文献   
53.
To find management strategies for controlling the owned cat population in Knox County, TN, the authors formulated a mathematical model using biological properties of such nonhuman animals and spay actions on certain age classes. They constructed this discrete-time model to predict the future owned cat population in this county and to evaluate intervention strategies to surgically sterilize some proportion of the population. Using the predicted population size and the number of surgeries for specific scenarios, they showed that focusing on specific age classes can be an effective feature in spay programs.  相似文献   
54.
55.
Diversity of the CRISPR locus of Mycobacterium tuberculosis complex has been studied since 1997 for molecular epidemiology purposes. By targeting solely the 43 spacers present in the two first sequenced genomes (H37Rv and BCG), it gave a biased idea of CRISPR diversity and ignored diversity in the neighbouring cas-genes. We set up tailored pipelines to explore the diversity of CRISPR-cas locus in Short Reads. We analyzed data from a representative set of 198 clinical isolates as evidenced by well-characterized SNPs. We found a relatively low diversity in terms of spacers: we recovered only the 68 spacers that had been described in 2000. We found no partial or global inversions in the sequences, letting always the Direct Variant Repeats (DVR) in the same order. In contrast, we found an unexpected diversity in the form of: SNPs in spacers and in Direct Repeats, duplications of various length, and insertions at various locations of the IS6110 insertion sequence, as well as blocks of DVR deletions. The diversity was in part specific to lineages. When reconstructing evolutionary steps of the locus, we found no evidence for SNP reversal. DVR deletions were linked to recombination between IS6110 insertions or between Direct Repeats. This work definitively shows that CRISPR locus of M. tuberculosis did not evolve by classical CRISPR adaptation (incorporation of new spacers) since the last most recent common ancestor of virulent lineages. The evolutionary mechanisms that we discovered could be involved in bacterial adaptation but in a way that remains to be identified.  相似文献   
56.
57.
An animal’s motivational state can significantly impact its behavior. We examined the effects of mating on the aggression of male Acheta domesticus crickets. Pairs of males were allowed to establish dominance and subordinance and were then physically separated. Subordinate males were then allowed to either copulate with a female or to have chemo-tactile contact with, but to not copulate with, a female. Less than 15 min after separation, all male pairs engaged in a second agonistic encounter. Subordinate males that copulated with females were significantly more aggressive toward their dominant partners than un-mated subordinate males. Many mated subordinates became dominant. Allowing a subordinate male to contact, but not copulate with, a female had a similar effect, suggesting that chemo-tactile cues from the female are sufficient to elicit this change in aggression.  相似文献   
58.
59.
60.
Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification—amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two‐Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure‐Function Linkage Database, SFLD) self‐identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self‐identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well‐curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP‐identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F‐measure and performance analysis on the enolase search results and comparison to GEMMA and SCI‐PHY demonstrate that TuLIP avoids the over‐division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号