首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18637篇
  免费   2142篇
  国内免费   6篇
  2021年   290篇
  2020年   168篇
  2019年   190篇
  2018年   248篇
  2017年   234篇
  2016年   397篇
  2015年   630篇
  2014年   651篇
  2013年   871篇
  2012年   1050篇
  2011年   991篇
  2010年   653篇
  2009年   622篇
  2008年   869篇
  2007年   794篇
  2006年   745篇
  2005年   780篇
  2004年   723篇
  2003年   746篇
  2002年   670篇
  2001年   434篇
  2000年   429篇
  1999年   411篇
  1998年   268篇
  1997年   252篇
  1996年   243篇
  1995年   187篇
  1994年   200篇
  1993年   203篇
  1992年   313篇
  1991年   290篇
  1990年   289篇
  1989年   273篇
  1988年   267篇
  1987年   268篇
  1986年   225篇
  1985年   281篇
  1984年   216篇
  1983年   194篇
  1982年   207篇
  1981年   193篇
  1980年   163篇
  1979年   205篇
  1978年   163篇
  1977年   160篇
  1976年   144篇
  1974年   154篇
  1973年   155篇
  1972年   131篇
  1971年   138篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
921.
The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A''s activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.  相似文献   
922.
923.
924.
925.

Background

Prostasomes are extracellular vesicles. Intracellularly they are enclosed by another larger vesicle, a so called “storage vesicle” equivalent to a multivesicular body of late endosomal origin. Prostasomes in their extracellular context are thought to play a crucial role in fertilization.

Methods

Prostasomes were purified according to a well worked-out schedule from seminal plasmas obtained from human, canine, equine and bovine species. The various prostasomes were subjected to SDS-PAGE separation and protein banding patterns were compared. To gain knowledge of the prostasomal protein systems pertaining to prostasomes of four different species proteins were analyzed using a proteomic approach. An in vitro assay was employed to demonstrate ATP formation by prostasomes of different species.

Results

The SDS-PAGE banding pattern of prostasomes from the four species revealed a richly faceted picture with most protein bands within the molecular weight range of 10–150 kDa. Some protein bands seemed to be concordant among species although differently expressed and the number of protein bands of dog prostasomes seemed to be distinctly fewer. Special emphasis was put on proteins involved in energy metabolic turnover. Prostasomes from all four species were able to form extracellular adenosine triphosphate (ATP). ATP formation was balanced by ATPase activity linked to the four types of prostasomes.

Conclusion

These potencies of a possession of functional ATP-forming enzymes by different prostasome types should be regarded against the knowledge of ATP having a profound effect on cell responses and now explicitly on the success of the sperm cell to fertilize the ovum.

General significance

This study unravels energy metabolic relationships of prostasomes from four different species.  相似文献   
926.
Messenger RNA encoded signals that are involved in programmed -1 ribosomal frameshifting (-1 PRF) are typically two-stemmed hairpin (H)-type pseudoknots (pks). We previously described an unusual three-stemmed pseudoknot from the severe acute respiratory syndrome (SARS) coronavirus (CoV) that stimulated -1 PRF. The conserved existence of a third stem–loop suggested an important hitherto unknown function. Here we present new information describing structure and function of the third stem of the SARS pseudoknot. We uncovered RNA dimerization through a palindromic sequence embedded in the SARS-CoV Stem 3. Further in vitro analysis revealed that SARS-CoV RNA dimers assemble through ‘kissing’ loop–loop interactions. We also show that loop–loop kissing complex formation becomes more efficient at physiological temperature and in the presence of magnesium. When the palindromic sequence was mutated, in vitro RNA dimerization was abolished, and frameshifting was reduced from 15 to 5.7%. Furthermore, the inability to dimerize caused by the silent codon change in Stem 3 of SARS-CoV changed the viral growth kinetics and affected the levels of genomic and subgenomic RNA in infected cells. These results suggest that the homodimeric RNA complex formed by the SARS pseudoknot occurs in the cellular environment and that loop–loop kissing interactions involving Stem 3 modulate -1 PRF and play a role in subgenomic and full-length RNA synthesis.  相似文献   
927.
928.
Gene synthesis attempts to assemble user-defined DNA sequences with base-level precision. Verifying the sequences of construction intermediates and the final product of a gene synthesis project is a critical part of the workflow, yet one that has received the least attention. Sequence validation is equally important for other kinds of curated clone collections. Ensuring that the physical sequence of a clone matches its published sequence is a common quality control step performed at least once over the course of a research project. GenoREAD is a web-based application that breaks the sequence verification process into two steps: the assembly of sequencing reads and the alignment of the resulting contig with a reference sequence. GenoREAD can determine if a clone matches its reference sequence. Its sophisticated reporting features help identify and troubleshoot problems that arise during the sequence verification process. GenoREAD has been experimentally validated on thousands of gene-sized constructs from an ORFeome project, and on longer sequences including whole plasmids and synthetic chromosomes. Comparing GenoREAD results with those from manual analysis of the sequencing data demonstrates that GenoREAD tends to be conservative in its diagnostic. GenoREAD is available at www.genoread.org.  相似文献   
929.

Background and Aims

Understanding the synthesis of ascorbic acid (l-AsA) in green tissues in model species has advanced considerably; here we focus on its production and accumulation in fruit. In particular, our aim is to understand the links between organs which may be sources of l-AsA (leaves) and those which accumulate it (fruits). The work presented here tests the idea that changes in leaf and fruit number influence the accumulation of l-AsA. The aim was to understand the importance of leaf tissue in the production of l-AsA and to determine how this might provide routes for the manipulation of fruit tissue l-AsA.

Methods

The experiments used Ribes nigrum (blackcurrant), predominantly in field experiments, where the source–sink relationship was manipulated to alter potential leaf l-AsA production and fruit growth and accumulation of l-AsA. These manipulations included reductions in reproductive capacity, by raceme removal, and the availability of assimilates by leaf removal and branch phloem girdling. Natural variation in fruit growth and fruit abscission is also described as this influences subsequent experimental design and the interpretation of l-AsA data.

Key Results

Results show that fruit l-AsA concentration is conserved but total yield of l-AsA per plant is dependent on a number of innate factors many of which relate to raceme attributes. Leaf removal and phloem girdling reduced fruit weight, and a combination of both reduced fruit yields further. It appears that around 50 % of assimilates utilized for fruit growth came from apical leaves, while between 20 and 30 % came from raceme leaves, with the remainder from ‘storage’.

Conclusions

Despite being able to manipulate leaf area and therefore assimilate availability and stored carbohydrates, along with fruit yields, rarely were effects on fruit l-AsA concentration seen, indicating fruit l-AsA production in Ribes was not directly coupled to assimilate supply. There was no supporting evidence that l-AsA production occurred predominantly in green leaf tissue followed by its transfer to developing fruits. It is concluded that l-AsA production occurs predominantly in the fruit of Ribes nigrum.  相似文献   
930.
The mechanisms by which B lymphocytes inhibit anti-tumor immunity remain poorly understood. Murine EMT-6 mammary tumors grow readily in immune competent mice (BALB/c), but poorly in B-cell-deficient μ?/? BALB/c mice (BCDM). T regulatory cell (Treg) expansion and function were impaired in BCDM compared with BALB/c. In this study, we compared tumor growth, Treg cell proliferation, tumor lymphocyte infiltration and cytolytic T cell activity in BALB/c, BCDM and BCDM partially reconstituted with B cells by adoptive transfer (BCDM+B). Partial reconstitution of BCDM with adoptively transferred B cells restored EMT-6 tumor growth, which was independent of IL-10 secretion by B cells. Instead, high frequencies of intratumoral B cells were associated with increased recruitment and proliferation of Treg cells within the tumor microenvironment. The B-cell-dependent accumulation of Treg within the tumor microenvironment was associated with reduced tumor infiltration by CD49+ NK and CD8+ T cells and reduced cytotoxic T cell activity against EMT-6 targets. Our studies indicate that tumor-dependent immunosuppression of T-cell-mediated anti-tumor immunity is coordinated within the tumor microenvironment by B-cell-dependent cross talk with Treg cells, which does not require production of IL-10 by B cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号