首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32044篇
  免费   2757篇
  国内免费   2077篇
  2024年   46篇
  2023年   331篇
  2022年   779篇
  2021年   1437篇
  2020年   931篇
  2019年   1122篇
  2018年   1112篇
  2017年   846篇
  2016年   1222篇
  2015年   1838篇
  2014年   2124篇
  2013年   2339篇
  2012年   2836篇
  2011年   2474篇
  2010年   1570篇
  2009年   1316篇
  2008年   1820篇
  2007年   1538篇
  2006年   1376篇
  2005年   1263篇
  2004年   1082篇
  2003年   992篇
  2002年   878篇
  2001年   565篇
  2000年   427篇
  1999年   514篇
  1998年   359篇
  1997年   293篇
  1996年   320篇
  1995年   269篇
  1994年   315篇
  1993年   217篇
  1992年   268篇
  1991年   234篇
  1990年   216篇
  1989年   155篇
  1988年   130篇
  1987年   124篇
  1986年   98篇
  1985年   120篇
  1984年   89篇
  1983年   84篇
  1982年   91篇
  1981年   80篇
  1980年   62篇
  1979年   59篇
  1978年   43篇
  1977年   48篇
  1976年   44篇
  1973年   38篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
921.
922.
Lu Deng  Han Zhang  Lei Song  Kai Yu 《Biometrics》2020,76(2):369-379
Mendelian randomization (MR) is a type of instrumental variable (IV) analysis that uses genetic variants as IVs for a risk factor to study its causal effect on an outcome. Extensive investigations on the performance of IV analysis procedures, such as the one based on the two-stage least squares (2SLS) procedure, have been conducted under the one-sample scenario, where measures on IVs, the risk factor, and the outcome are assumed to be available for each study participant. Recent MR analysis usually is performed with data from two independent or partially overlapping genetic association studies (two-sample setting), with one providing information on the association between the IVs and the outcome, and the other on the association between the IVs and the risk factor. We investigate the performance of 2SLS in the two-sample–based MR when the IVs are weakly associated with the risk factor. We derive closed form formulas for the bias and mean squared error of the 2SLS estimate and verify them with numeric simulations under realistic circumstances. Using these analytic formulas, we can study the pros and cons of conducting MR analysis under one-sample and two-sample settings and assess the impact of having overlapping samples. We also propose and validate a bias-corrected estimator for the causal effect.  相似文献   
923.
Natural tissues are incorporated with vasculature, which is further integrated with a cardiovascular system responsible for driving perfusion of nutrient-rich oxygenated blood through the vasculature to support cell metabolism within most cell-dense tissues. Since scaffold-free biofabricated tissues being developed into clinical implants, research models, and pharmaceutical testing platforms should similarly exhibit perfused tissue-like structures, we generated a generalizable biofabrication method resulting in self-supporting perfused (SSuPer) tissue constructs incorporated with perfusible microchannels and integrated with the modular FABRICA perfusion bioreactor. As proof of concept, we perfused an MLO-A5 osteoblast-based SSuPer tissue in the FABRICA. Although our resulting SSuPer tissue replicated vascularization and perfusion observed in situ, supported its own weight, and stained positively for mineral using Von Kossa staining, our in vitro results indicated that computational fluid dynamics (CFD) should be used to drive future construct design and flow application before further tissue biofabrication and perfusion. We built a CFD model of the SSuPer tissue integrated in the FABRICA and analyzed flow characteristics (net force, pressure distribution, shear stress, and oxygen distribution) through five SSuPer tissue microchannel patterns in two flow directions and at increasing flow rates. Important flow parameters include flow direction, fully developed flow, and tissue microchannel diameters matched and aligned with bioreactor flow channels. We observed that the SSuPer tissue platform is capable of providing direct perfusion to tissue constructs and proper culture conditions (oxygenation, with controllable shear and flow rates), indicating that our approach can be used to biofabricate tissue representing primary tissues and that we can model the system in silico.  相似文献   
924.
Protein engineering is a powerful tool for improving the properties of enzymes. However, large changes in enzyme properties are still challenging for traditional evolution strategies because they usually require multiple amino acid substitutions. In this study, a feasible evolution approach by a combination of fragment swapping and semi-rational design was developed for the engineering of nitrilase. A chimera BaNIT harboring 12 amino acid substitutions was obtained using nitrilase from Arabis alpine (AaNIT) and Brassica rapa (BrNIT) as parent enzymes, which exhibited higher enantioselectivity and activity toward isobutylsuccinonitrile for the biosynthesis of pregabalin precursor. The semi-rational design was executed on BaNIT to further generate variant BaNIT/L223Q/H263D/Q279E with the concurrent improvement of activity, enantioselectivity, and solubility. The robust nitrilase displayed a 5.4-fold increase in whole-cell activity and the enantiomeric ratio (E) increased from 180 to higher than 300. Molecular dynamics simulation and molecular docking demonstrated that the substitution of residues on the A and C surface contributed to the conformation alteration of nitrilase, leading to the simultaneous enhancement of enzyme properties. The results obtained not only successfully engineered the nitrilase with great industrial potential for the production of pregabalin precursor, but also provided a new perspective for the development of novel industrially important enzymes.  相似文献   
925.
Triple-negative breast cancer (TNBC) is associated with a high mortality rate, which is related to the insufficient number of appropriate biomarkers and targets. Therefore, there is an urgent need to discover appropriate biomarkers and targets for TNBC. SARNP (Hcc-1 and CIP29) is highly expressed in several cancers. It binds to UAP56, an RNA helicase component of the TREX complex in messenger RNA (mRNA) splicing and export. However, the role of SARNP in mRNA splicing and export and in the progression of breast cancer, especially of TNBC, remains unknown. Therefore, we examined the role of SARNP in mRNA splicing and export and progression of TNBC. We confirmed that SARNP binds to UAP56 and Aly and that SARNP overexpression enhances mRNA splicing, whereas its knockdown suppressed mRNA export. The SARNP overexpression induced the proliferation of MCF7 cells, whereas its knockdown induced E-cadherin expression and downregulated vimentin and N-cadherin expressions in SK-BR-3 and MDA-MB-231 cells. SARNP downregulates E-cadherin expression by interaction with pinin. Mice injected with MDA-MB-231shSARNP cells exhibited a significant reduction in tumor growth and lung metastasis compared with those injected with MDA-MB-231shCon cells in vivo. These findings suggested that SARNP is involved in mRNA splicing and export. SARNP maintains mesenchymal phenotype by escaping from inhibitory interaction with pinin leading to the downregulation of E-cadherin expression.  相似文献   
926.
Mesenchymal stem cells (MSCs) have been proved to exert considerable therapeutic effects on ischemia-reperfusion (I/R)-induced injury, but the underlying mechanism remains unknown. In this study, we aimed to explore the potential molecular mechanism underlying the therapeutic effect of MSCs-derived exosome reinforced with miR-20a in reversing liver I/R injury. Quantitative real-time polymerase chain reaction, Western blot, and IHC were carried out to compare the differential expressions of miR-20a, Beclin-I, FAS, Caspase-3, mTOR and P62 in IR rats and normal rats. TUNEL was performed to assess IR-induced apoptosis in IR rats, and luciferase assay was used to confirm the inhibitory effect of miR-20a on Beclin-I and FAS expression. Among the 12 candidate microRNAs (miRNAs), miR-486, miR-25, miR-24, miR-20a,miR-466 and miR-433-3p were significantly downregulated in I/R. In particular, miR-20a, a miRNA highly expressed in umbilical cord-derived mesenchymal stem cells, was proved to bind to the 3ʹ UTR of Beclin-I and FAS to exert an inhibitory effect on their expressions. Since Beclin-I and FAS were aberrantly upregulated in IR, exosomes separated from UC-MSCs showed therapeutic efficacy in reversing I/R induced apoptosis. In addition, exosomes reinforced with miR-20a and separated from UC-MSCs almost fully alleviated I/R injury. Furthermore, our results showed that miR-20a could alleviate the abnormal expression of genes related to apoptosis and autophagy, such as active Caspase-3, mTOR, P62, and LC3II. This study presented detailed evidence to clarify the mechanism underlying the therapeutic efficacy of UC-MSCs in the treatment of I/R injury.  相似文献   
927.
Cover Image     
Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798lyt2169-(pXY1-Pthl-augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5-fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community.  相似文献   
928.
Hydrobiologia - Pithecopus rusticus is an endemic amphibian restricted to the type locality, in southern Brazil, and possibly endangered to extinction, due to habitat degradation. However, an...  相似文献   
929.
The QT interval is a recording of cardiac electrical activity. Previous genome-wide association studies identified genetic variants that modify the QT interval upstream of LITAF (lipopolysaccharide-induced tumor necrosis factor-α factor), a protein encoding a regulator of endosomal trafficking. However, it was not clear how LITAF might impact cardiac excitation. We investigated the effect of LITAF on the voltage-gated sodium channel Nav1.5, which is critical for cardiac depolarization. We show that overexpressed LITAF resulted in a significant increase in the density of Nav1.5-generated voltage-gated sodium current INa and Nav1.5 surface protein levels in rabbit cardiomyocytes and in HEK cells stably expressing Nav1.5. Proximity ligation assays showed co-localization of endogenous LITAF and Nav1.5 in cardiomyocytes, whereas co-immunoprecipitations confirmed they are in the same complex when overexpressed in HEK cells. In vitro data suggest that LITAF interacts with the ubiquitin ligase NEDD4-2, a regulator of Nav1.5. LITAF overexpression down-regulated NEDD4-2 in cardiomyocytes and HEK cells. In HEK cells, LITAF increased ubiquitination and proteasomal degradation of co-expressed NEDD4-2 and significantly blunted the negative effect of NEDD4-2 on INa. We conclude that LITAF controls cardiac excitability by promoting degradation of NEDD4-2, which is essential for removal of surface Nav1.5. LITAF-knockout zebrafish showed increased variation in and a nonsignificant 15% prolongation of action potential duration. Computer simulations using a rabbit-cardiomyocyte model demonstrated that changes in Ca2+ and Na+ homeostasis are responsible for the surprisingly modest action potential duration shortening. These computational data thus corroborate findings from several genome-wide association studies that associated LITAF with QT interval variation.  相似文献   
930.
Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high mortality and poor prognosis due to a lack of predictive markers. Increasing evidence has demonstrated small nucleolar RNAs (snoRNAs) play an important role in tumorigenesis. The aim of this study was to identify a prognostic snoRNA signature of HNSCC. Survival-related snoRNAs were screened by Cox regression analysis (univariate, least absolute shrinkage and selection operator, and multivariate). The predictive value was validated in different subgroups. The biological functions were explored by coexpression analysis and gene set enrichment analysis (GSEA). One hundred and thirteen survival-related snoRNAs were identified, and a five-snoRNA signature predicted prognosis with high sensitivity and specificity. Furthermore, the signature was applicable to patients of different sexes, ages, stages, grades, and anatomic subdivisions. Coexpression analysis and GSEA revealed the five-snoRNA are involved in regulating malignant phenotype and DNA/RNA editing. This five-snoRNA signature is not only a promising predictor of prognosis and survival but also a potential biomarker for patient stratification management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号