首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6745篇
  免费   645篇
  国内免费   3篇
  7393篇
  2023年   29篇
  2022年   50篇
  2021年   113篇
  2020年   67篇
  2019年   68篇
  2018年   112篇
  2017年   105篇
  2016年   170篇
  2015年   285篇
  2014年   298篇
  2013年   409篇
  2012年   476篇
  2011年   457篇
  2010年   295篇
  2009年   296篇
  2008年   430篇
  2007年   376篇
  2006年   325篇
  2005年   372篇
  2004年   345篇
  2003年   357篇
  2002年   300篇
  2001年   76篇
  2000年   50篇
  1999年   84篇
  1998年   104篇
  1997年   75篇
  1996年   65篇
  1995年   64篇
  1994年   63篇
  1993年   65篇
  1992年   48篇
  1991年   51篇
  1990年   42篇
  1989年   42篇
  1988年   47篇
  1987年   49篇
  1986年   49篇
  1985年   57篇
  1984年   41篇
  1983年   45篇
  1982年   54篇
  1981年   56篇
  1980年   46篇
  1979年   34篇
  1978年   28篇
  1977年   33篇
  1976年   28篇
  1973年   21篇
  1969年   22篇
排序方式: 共有7393条查询结果,搜索用时 15 毫秒
121.
The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms.  相似文献   
122.
Invasive non-native plants are a major driver of native biodiversity loss, yet native biodiversity can sometimes benefit from non-native species. Depending on habitat context, even the same non-native species can have positive and negative effects on biodiversity. Blackberry (Rubus fruticosus aggregate) is a useful model organism to better understand a non-native plant with conflicting impacts on biodiversity. We used a replicated capture-mark-recapture study across 11 consecutive seasons to examine the response of small mammal diversity and abundance to vegetation structure and density associated with non-native blackberry (R. anglocandicans) in native, hybrid and blackberry-dominated novel ecosystems in Australia. Across the three habitat types, increasing blackberry dominance had a positive influence on mammal diversity, while the strength and direction of this influence varied for abundance. At a microhabitat scale within hybrid and native habitat there were no significant differences in diversity, or the abundance of most species, between microhabitats where blackberry was absent versus dominant. In contrast, in novel ecosystems diversity and abundances were very low without blackberry, yet high (comparable to native ecosystems) within blackberry as it provided functionally-analogous vegetation structure and density to the lost native understory. Our results indicate the ecological functions of non-native plant species vary depending on habitat and need to be considered for management. Comparative studies such as ours that apply a standardized approach across a broad range of conditions at the landscape and habitat scale are crucial for guiding land managers on control options for non-native species (remove, reduce or retain and contain) that are context-sensitive and scale-dependent.  相似文献   
123.
124.
125.
126.

Background

Neuron specific enolase (ENO2, γ-enolase) has been used as a biomarker to help identify neuroendocrine differentiation in breast cancer. The goal of the present study was to determine if ENO2 expression in the breast epithelial cell is influenced by the environmental pollutants, arsenite and cadmium. Acute and chronic exposure of MCF-10A cells to As+3 and Cd+2 sufficient to allow colony formation in soft agar, was used to determine if ENO2 expression was altered by these pollutants.

Results

It was shown that both As+3 and Cd+2 exposure caused significant increases in ENO2 expression under conditions of both acute and chronic exposure. In contrast, ENO1, the major glycolytic enolase in non-muscle and neuronal cells, was largely unaffected by exposure to either As+3 or Cd+2. Localization studies showed that ENO2 in the MCF-10A cells transformed by As+3 or Cd+2 had both a cytoplasmic and nuclear localization. In contrast, ENO1 was localized to the cytoplasm. ENO2 localized to the cytoplasm was found to co-localized with ENO1.

Conclusion

The results are the first to show that ENO2 expression in breast epithelial cells is induced by acute and chronic exposure to As+3 or Cd+2. The findings also suggest a possible link between As+3 and Cd+2 exposure and neuroendocrine differentiation in tumors. Overall, the results suggest that ENO2 might be developed as a biomarker indicating acute and/or chronic environmental exposure of the breast epithelial cell to As+3 and Cd+2.  相似文献   
127.
Exposure to air pollutants such as ozone (O(3)) induces airway hyperresponsiveness (AHR) and airway inflammation. Toll-like receptors (TLR) are first-line effector molecules in innate immunity to infections and signal via adapter proteins, including myeloid differentiation factor-88 (MyD88). We investigated the sensing of ozone by TLR2, TLR4, and MyD88. Ozone induced AHR in wild-type (WT) C57BL/6 mice, but AHR was absent in TLR2(-/-), TLR4(-/-), and MyD88(-/-) mice. Bronchoalveolar lavage neutrophilia induced by ozone was inhibited at 3 h but not at 24 h in TLR2(-/-) and TLR4(-/-) mice, while in MyD88(-/-) mice, this was inhibited at 24 h. We investigated the expression of inflammatory cytokines and TLR2, TLR4, and MyD88 in these mice. Ozone induced time-dependent increases in inflammatory gene expression of keratinocyte chemoattractant (KC) and IL-6 and of TLR2, TLR4, and MyD88 in WT mice. IL-6 and KC expression induced by ozone was inhibited in TLR2(-/-), TLR4(-/-), and MyD88(-/-) mice. Expression of MyD88 was increased in TLR2(-/-) and TLR4(-/-) mice, while induction of TLR2 or TLR4 was reduced in TLR2(-/-) and TLR4(-/-) mice, respectively. TLR2 and TLR4 mediate AHR induced by oxidative stress such as ozone, while the adapter protein MyD88, but not TLR2 or TLR4, is important in mediating ozone-induced neutrophilia. TLR2 and TLR4 may also be important in regulating the speed of neutrophilic response. Therefore, ozone may induce murine AHR and neutrophilic inflammation through the activation of the Toll-like receptor pathway that may sense noninfectious stimuli such as oxidative stress.  相似文献   
128.
Tsai JJ  Liu SH  Yin SC  Yang CN  Hsu HS  Chen WB  Liao EC  Lee WJ  Pan HC  Sheu ML 《PloS one》2011,6(9):e23249

Background

Allergic disease can be characterized as manifestations of an exaggerated inflammatory response to environmental allergens triggers. Mite allergen Der-p2 is one of the major allergens of the house dust mite, which contributes to TLR4 expression and function in B cells in allergic patients. However, the precise mechanisms of Der-p2 on B cells remain obscure.

Methodology/Principal Findings

We investigated the effects of Der-p2 on proinflammatory cytokines responses and Toll-like receptor-4 (TLR4)-related signaling in human B cells activation. We demonstrated that Der-p2 activates pro-inflammatory cytokines, TLR4 and its co-receptor MD2. ERK inhibitor PD98059 significantly enhanced TLR4/MD2 expression in Der-p2-treated B cells. Der-p2 markedly activated mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) and decreased p38 phosphorylation in B cells. MKP-1-siRNA downregulated TLR4/MD2 expression in Der-p2-treated B cells. In addition, Der-p2 significantly up-regulated expression of co-stimulatory molecules and increased B cell proliferation. Neutralizing Der-p2 antibody could effectively abrogate the Der-p2-induced B cell proliferation. Der-p2 could also markedly induce NF-κB activation in B cells, which could be counteracted by dexamethasone.

Conclusions/Significance

These results strongly suggest that Der-p2 is capable of triggering B cell activation and MKP-1-activated p38/MAPK dephosphorylation-regulated TLR4 induction, which subsequently enhances host immune, defense responses and development of effective allergic disease therapeutics in B cells.  相似文献   
129.
A lack of regulatory T (T(Reg)) cells that express CD4, CD25 and forkhead box P3 (FOXP3) results in severe autoimmunity in both mice and humans. Since the discovery of T(Reg) cells, there has been intense investigation aimed at determining how they protect an organism from autoimmunity and whether defects in their number or function contribute to the development of autoimmunity in model systems. The next phase of investigation - that is, to define the role that defects in T(Reg) cells have in human autoimmunity - is now underway. This Review summarizes our progress so far towards understanding the role of CD4(+)CD25(+)FOXP3(+) T(Reg) cells in human autoimmune diseases and the impact that this knowledge might have on the diagnosis and treatment of these diseases.  相似文献   
130.
During insemination, males of internally fertilizing speciestransfer a complex array of seminal fluid proteins to the femalereproductive tract. These proteins can have profound effectson female reproductive physiology and behavior and are thoughtto mediate postcopulatory sexual selection and intersexual conflict.Such selection may cause seminal fluid to evolve rapidly, withpotentially important consequences for speciation. Here we investigatethe evolution of seminal fluid proteins in a major mammalianradiation, the muroid rodents, by quantifying diversity in seminalfluid proteome composition for the first time across a broadrange of closely related species. Using comparative proteomicstechniques to identify and cross-match proteins, we demonstratethat rodent seminal fluid is highly diverse at the level ofboth proteomes and individual proteins. The striking interspecificheterogeneity in seminal fluid composition revealed by our surveyfar exceeds that seen in a second proteome of comparable complexity,skeletal muscle, indicating that the complement of proteinsexpressed in seminal fluid may be subject to rapid diversification.We further show that orthologous seminal fluid proteins exhibitsubstantial interspecific variation in molecular mass. Becausethis variation cannot be attributed to differential glycosylationor radical differences in termination sites, it is stronglysuggestive of rapid amino acid divergence. Sperm competitionis implicated in generating such divergence for at least onemajor seminal fluid protein in our study, SVS II, which is responsiblefor copulatory plug formation via transglutaminase-catalyzedcross-linking after insemination. We show that the molecularmass of SVS II is positively correlated with relative testissize across species, which could be explained by selection foran increased number of cross-linking sites involved in the formationof the copulatory plug under sperm competition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号