全文获取类型
收费全文 | 3379篇 |
免费 | 193篇 |
专业分类
3572篇 |
出版年
2023年 | 21篇 |
2022年 | 47篇 |
2021年 | 89篇 |
2020年 | 70篇 |
2019年 | 73篇 |
2018年 | 104篇 |
2017年 | 93篇 |
2016年 | 124篇 |
2015年 | 159篇 |
2014年 | 206篇 |
2013年 | 251篇 |
2012年 | 319篇 |
2011年 | 286篇 |
2010年 | 177篇 |
2009年 | 137篇 |
2008年 | 210篇 |
2007年 | 171篇 |
2006年 | 185篇 |
2005年 | 159篇 |
2004年 | 125篇 |
2003年 | 112篇 |
2002年 | 88篇 |
2001年 | 24篇 |
2000年 | 14篇 |
1999年 | 19篇 |
1998年 | 18篇 |
1997年 | 18篇 |
1996年 | 14篇 |
1995年 | 10篇 |
1994年 | 12篇 |
1992年 | 10篇 |
1991年 | 8篇 |
1990年 | 13篇 |
1989年 | 9篇 |
1988年 | 9篇 |
1986年 | 13篇 |
1985年 | 9篇 |
1984年 | 12篇 |
1983年 | 12篇 |
1982年 | 10篇 |
1980年 | 17篇 |
1977年 | 10篇 |
1976年 | 7篇 |
1975年 | 7篇 |
1974年 | 8篇 |
1973年 | 7篇 |
1972年 | 8篇 |
1971年 | 10篇 |
1969年 | 9篇 |
1964年 | 7篇 |
排序方式: 共有3572条查询结果,搜索用时 15 毫秒
41.
Involvement of phosphatidylinositol 3-kinase-mediated up-regulation of I kappa B alpha in anti-inflammatory effect of gemfibrozil in microglia 总被引:1,自引:0,他引:1
Jana M Jana A Liu X Ghosh S Pahan K 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(6):4142-4152
The present study underlines the importance of PI3K in mediating the anti-inflammatory effect of gemfibrozil, a prescribed lipid-lowering drug for humans, in mouse microglia. Gemfibrozil inhibited LPS-induced expression of inducible NO synthase (iNOS) and proinflammatory cytokines in mouse BV-2 microglial cells and primary microglia. By overexpressing wild-type and dominant-negative constructs of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in microglial cells and isolating primary microglia from PPAR-alpha-/- mice, we have demonstrated that gemfibrozil inhibits the activation of microglia independent of PPAR-alpha. Interestingly, gemfibrozil induced the activation of p85alpha-associated PI3K (p110beta but not p110alpha) and inhibition of that PI3K by either chemical inhibitors or dominant-negative mutants abrogated the inhibitory effect of gemfibrozil. Conversely, overexpression of the constitutively active mutant of p110 enhanced the inhibitory effect of gemfibrozil on LPS-induced expression of proinflammatory molecules. Similarly, gemfibrozil also inhibited fibrillar amyloid beta (Abeta)-, prion peptide (PrP)-, dsRNA (poly IC)-, HIV-1 Tat-, and 1-methyl-4-phenylpyridinium (MPP+)-, but not IFN-gamma-, induced microglial expression of iNOS. Inhibition of PI3K also abolished the inhibitory effect of gemfibrozil on Abeta-, PrP-, poly IC-, Tat-, and MPP+-induced microglial expression of iNOS. Involvement of NF-kappaB activation in LPS-, Abeta-, PrP-, poly IC-, Tat-, and MPP+-, but not IFN-gamma-, induced microglial expression of iNOS and stimulation of IkappaBalpha expression and inhibition of NF-kappaB activation by gemfibrozil via the PI3K pathway suggests that gemfibrozil inhibits the activation of NF-kappaB and the expression of proinflammatory molecules in microglia via PI3K-mediated up-regulation of IkappaBalpha. 相似文献
42.
Gerald Lackner Mathias Misiek Jana Braesel Dirk Hoffmeister 《Fungal genetics and biology : FG & B》2012,49(12):996-1003
Numerous polyketides are known from bacteria, plants, and fungi. However, only a few have been isolated from basidiomycetes. Large scale genome sequencing projects now help anticipate the capacity of basidiomycetes to synthesize polyketides. In this study, we identified and annotated 111 type I and three type III polyketide synthase (PKS) genes from 35 sequenced basidiomycete genomes. Phylogenetic analysis of PKS genes suggests that all main types of fungal iterative PKS had already evolved before the Ascomycota and Basidiomycota diverged. A comparison of genomic and metabolomic data shows that the number of polyketide genes exceeds the number of known polyketide structures by far. Exploiting these results to design degenerate PCR primers, we amplified and cloned the complete sequence of armB, a PKS gene from the melleolide producer Armillaria mellea. We expect this study will serve as a guide for future genomic mining projects to discover structurally diverse mushroom-derived polyketides. 相似文献
43.
44.
Christoph Dockter Damian Gruszka Ilka Braumann Arnis Druka Ilze Druka Jerome Franckowiak Simon P. Gough Anna Janeczko Marzena Kurowska Joakim Lundqvist Udda Lundqvist Marek Marzec Izabela Matyszczak André H. Müller Jana Oklestkova Burkhard Schulz Shakhira Zakhrabekova Mats Hansson 《Plant physiology》2014,166(4):1912-1927
Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.The introduction of dwarfing genes to increase culm sturdiness of cereal crops was crucial for the first Green Revolution (Hedden, 2003). The culms of tall cereal crops were not strong enough to support the heavy spikes of high-yielding cultivars, especially under high-nitrogen conditions. As a result, plants fell over, a process known as lodging. This caused losses in yield and grain-quality issues attributable to fungal infections, mycotoxin contamination, and preharvest germination (Rajkumara, 2008). Today, a second Green Revolution is on its way, to revolutionize the agricultural sector and to ensure food production for a growing world population. Concurrently, global climate change is expected to cause more frequent occurrences of extreme weather conditions, including thunderstorms with torrential rain and strong winds, thus promoting cereal culm breakage (Porter and Semenov, 2005; National Climate Assessment Development Advisory Committee, 2013). Accordingly, plant architectures that resist lodging remain a major crop-improvement goal and identification of genes that regulate culm length is required to enhance the genetic toolbox in order to facilitate efficient marker-assisted breeding. The mutations and the corresponding genes that enabled the Green Revolution in wheat (Triticum aestivum) and rice (Oryza sativa) have been identified (Hedden, 2003). They all relate to gibberellin metabolism and signal transduction. It is now known that other plant hormones such as brassinosteroids are also involved in the regulation of plant height. Knowledge of the molecular mechanisms underlying the effects of the two hormones on cell elongation and division has mainly come from studies in Arabidopsis (Arabidopsis thaliana; Bai et al., 2012). Mutant-based breeding strategies to fine-tune brassinosteroid metabolism and signaling pathways could improve lodging behavior in modern crops (Vriet et al., 2012) such as barley (Hordeum vulgare), which is the fourth most abundant cereal in both area and tonnage harvested (http://faostat.fao.org).A short-culm phenotype in crops is often accompanied by other phenotypic changes. Depending on the penetrance of such pleiotropic characters, but also the parental background and different scientific traditions and expertise, short-culmed barley mutants were historically divided into groups, such as brachytic (brh), breviaristatum (ari), dense spike (dsp), erectoides (ert), semibrachytic (uzu), semidwarf (sdw), or slender dwarf (sld; Franckowiak and Lundqvist, 2012). Subsequent mutant characterization was limited to intragroup screens and very few allelism tests between mutants from different groups have been reported (Franckowiak and Lundqvist, 2012). Although the total number of short-culm barley mutants exceeds 500 (Franckowiak and Lundqvist, 2012), very few have been characterized at the DNA level (Helliwell et al., 2001; Jia et al., 2009; Chandler and Harding, 2013; Houston et al., 2013). One of the first identified haplotypes was uzu barley (Chono et al., 2003). The Uzu1 gene encodes the brassinosteroid hormone receptor and is orthologous to the BRASSINOSTEROID-INSENSITIVE1 (BRI1) gene of Arabidopsis, a crucial promoter of plant growth (Li and Chory, 1997). The uzu1.a allele has been used in East Asia for over a century and is presently distributed in winter barley cultivars in Japan, the Korean peninsula, and China (Saisho et al., 2004). Its agronomic importance comes from the short and sturdy culm that provides lodging resistance, and an upright plant architecture that tolerates dense planting.Today, more than 50 different brassinosteroids have been identified in plants (Bajguz and Tretyn, 2003). Most are intermediates of the complex biosynthetic pathway (Shimada et al., 2001). Approximately nine genes code for the enzymes that participate in the biosynthetic pathway from episterol to brassinolide (Supplemental Fig. S1). Brassinosteroid deficiency is caused by down-regulation of these genes, but it can also be associated with brassinosteroid signaling. The first protein in the signaling network is the brassinosteroid receptor encoded by BRI1 (Li and Chory, 1997; Kim and Wang, 2010). In this work, we show how to visually identify brassinosteroid-mutant barley plants and we describe more than 20 relevant mutations in four genes of the brassinosteroid biosynthesis and signaling pathways that can be used in marker-assisted breeding strategies. 相似文献
45.
Banoglu E Çalişkan B Luderer S Eren G Özkan Y Altenhofen W Weinigel C Barz D Gerstmeier J Pergola C Werz O 《Bioorganic & medicinal chemistry》2012,20(12):3728-3741
Pharmacological suppression of leukotriene biosynthesis by 5-lipoxygenase (5-LO)-activating protein (FLAP) inhibitors is a promising strategy to intervene with inflammatory, allergic and cardiovascular diseases. Virtual screening targeting FLAP based on a combined ligand- and structure-based pharmacophore model led to the identification of 1-(2-chlorobenzyl)-2-(1-(4-isobutylphenyl)ethyl)-1H-benzimidazole (7) as developable candidate. Compound 7 potently suppressed leukotriene formation in intact neutrophils (IC(50)=0.31 μM) but essentially failed to directly inhibit 5-LO suggesting that interaction with FLAP causes inhibition of leukotriene synthesis. For structural optimization, a series of 46 benzimidazole-based derivatives of 7 were synthesized leading to more potent analogues (70-72, 82) with IC(50)=0.12-0.19 μM in intact neutrophils. Together, our results disclose the benzimidazole scaffold bearing an ibuprofen fingerprint as a new chemotype for further development of anti-leukotriene agents. 相似文献
46.
Johannes W. Kung Jana Seifert Martin von Bergen Matthias Boll 《Journal of bacteriology》2013,195(14):3193-3200
The strictly anaerobic Syntrophus aciditrophicus is a fermenting deltaproteobacterium that is able to degrade benzoate or crotonate in the presence and in the absence of a hydrogen-consuming partner. During growth in pure culture, both substrates are dismutated to acetate and cyclohexane carboxylate. In this work, the unknown enzymes involved in the late steps of cyclohexane carboxylate formation were studied. Using enzyme assays monitoring the oxidative direction, a cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA)-forming cyclohexanecarboxyl-CoA (ChCoA) dehydrogenase was purified and characterized from S. aciditrophicus and after heterologous expression of its gene in Escherichia coli. In addition, a cyclohexa-1,5-diene-1-carboxyl-CoA (Ch1,5CoA)-forming Ch1CoA dehydrogenase was characterized after purification of the heterologously expressed gene. Both enzymes had a native molecular mass of 150 kDa and were composed of a single, 40- to 45-kDa subunit; both contained flavin adenine dinucleotide (FAD) as a cofactor. While the ChCoA dehydrogenase was competitively inhibited by Ch1CoA in the oxidative direction, Ch1CoA dehydrogenase further converted the product Ch1,5CoA to benzoyl-CoA. The results obtained suggest that Ch1,5CoA is a common intermediate in benzoate and crotonate fermentation that serves as an electron-accepting substrate for the two consecutively operating acyl-CoA dehydrogenases characterized in this work. In the case of benzoate fermentation, Ch1,5CoA is formed by a class II benzoyl-CoA reductase; in the case of crotonate fermentation, Ch1,5CoA is formed by reversing the reactions of the benzoyl-CoA degradation pathway that are also employed during the oxidative (degradative) branch of benzoate fermentation. 相似文献
47.
Orru M Bakešová J Brugarolas M Quiroz C Beaumont V Goldberg SR Lluís C Cortés A Franco R Casadó V Canela EI Ferré S 《PloS one》2011,6(1):e16088
Striatal adenosine A(2A) receptors (A(2A)Rs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D(2) receptors (D(2)Rs). A(2A)Rs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1) receptors (A(1)Rs). It has been hypothesized that postsynaptic A(2A)R antagonists should be useful in Parkinson's disease, while presynaptic A(2A)R antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2A)R antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2A)R-D(2)R and A(1)R-A(2A)R heteromers to determine possible differences in the affinity of these compounds for different A(2A)R heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2A)R when co-expressed with D(2)R than with A(1)R. KW-6002 showed the best relative affinity for A(2A)R co-expressed with D(2)R than co-expressed with A(1)R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential pre- versus postsynaptic actions, SCH-442416 and KW-6002 may be used as lead compounds to obtain more effective antidyskinetic and antiparkinsonian compounds, respectively. 相似文献
48.
Sebastian Damerow Anne-Christin Lamerz Thomas Haselhorst Jana Führing Patricia Zarnovican Mark von Itzstein Fran?oise H. Routier 《The Journal of biological chemistry》2010,285(2):878-887
The Leishmania parasite glycocalyx is rich in galactose-containing glycoconjugates that are synthesized by specific glycosyltransferases that use UDP-galactose as a glycosyl donor. UDP-galactose biosynthesis is thought to be predominantly a de novo process involving epimerization of the abundant nucleotide sugar UDP-glucose by the UDP-glucose 4-epimerase, although galactose salvage from the environment has been demonstrated for Leishmania major. Here, we present the characterization of an L. major UDP-sugar pyrophosphorylase able to reversibly activate galactose 1-phosphate into UDP-galactose thus proving the existence of the Isselbacher salvage pathway in this parasite. The ordered bisubstrate mechanism and high affinity of the enzyme for UTP seem to favor the synthesis of nucleotide sugar rather than their pyrophosphorolysis. Although L. major UDP-sugar pyrophosphorylase preferentially activates galactose 1-phosphate and glucose 1-phosphate, the enzyme is able to act on a variety of hexose 1-phosphates as well as pentose 1-phosphates but not hexosamine 1-phosphates and hence presents a broad in vitro specificity. The newly identified enzyme exhibits a low but significant homology with UDP-glucose pyrophosphorylases and conserved in particular is the pyrophosphorylase consensus sequence and residues involved in nucleotide and phosphate binding. Saturation transfer difference NMR spectroscopy experiments confirm the importance of these moieties for substrate binding. The described leishmanial enzyme is closely related to plant UDP-sugar pyrophosphorylases and presents a similar substrate specificity suggesting their common origin. 相似文献
49.
Srabanti Jana 《Journal of biomolecular structure & dynamics》2019,37(4):944-965
Matrix metalloproteinase-9 (MMP-9) is a significant target for the development of drugs for the treatment of arthritis, CNS disorders, and cancer metastasis. The structure-based and ligand-based methods were used for the virtual screening (VS) of database compounds to obtain potent and selective MMP-9 inhibitors. Experimentally known MMP-9 inhibitors were used to grow up ligand-based three pharmacophore models utilizing Schrodinger suite. The X-ray crystallographic structures of MMP-9 with different inhibitors were used to develop five energy-optimized structure-based (e-pharmacophore) models. All developed pharmacophores were validated and applied to screen the Zinc database. Pharmacophore matched compounds were subjected to molecular docking to retrieve hits with novel scaffolds. The molecules with diverse structures, high docking scores and low binding energies for various crystal structures of MMP-9, were selected as final hits. The Induced fit docking (IFD) analysis provided significant information about the driving of inhibitor to approve a suitable bioactive conformational position in the active site of protein. Since charge transfer reaction occurs during receptor–ligand interaction, therefore, electronic features of hits (ligands) are interesting parameters to explain the binding interactions. Density functional theory (DFT) at B3LYP/6-31G* level was utilized to explore electronic features of hits. The docking study of hits using AutoDock was helpful to establish the binding interactions. The study illustrates that the combined pharmacophore approach is advantageous to identify diverse hits which have better binding affinity to the active site of the enzyme for all possible bioactive conformations. The approach used in the study is worthy to design drugs for other targets. 相似文献
50.
The objective of this study was to assess the LIF (leukemia inhibitory factor) concentration in uterine flushing and serum (ELISA) of women with proven fertility, infertile women and women with recurrent miscarriage. In addition, progesterone level was determined in serum. A decreased production of LIF in the uterine microenvironment was found in states of impaired fertility. With a cut-off point of 8.23 pg/ml for LIF level in uterine flushings we have achieved 86.7% sensitivity and 100% specificity in detection of women with idiopathic infertility compared to fertile controls. No correlation between LIF in serum and uterine flushing was demonstrated, rendering LIF measurements in serum useless for diagnosis of impaired infertility. We conclude that LIF measurement in uterine flushing could be a useful diagnostic tool to predict unsuccessful implantation. 相似文献