全文获取类型
收费全文 | 3433篇 |
免费 | 201篇 |
专业分类
3634篇 |
出版年
2023年 | 21篇 |
2022年 | 47篇 |
2021年 | 89篇 |
2020年 | 70篇 |
2019年 | 73篇 |
2018年 | 105篇 |
2017年 | 94篇 |
2016年 | 126篇 |
2015年 | 161篇 |
2014年 | 207篇 |
2013年 | 254篇 |
2012年 | 325篇 |
2011年 | 289篇 |
2010年 | 178篇 |
2009年 | 139篇 |
2008年 | 212篇 |
2007年 | 174篇 |
2006年 | 187篇 |
2005年 | 162篇 |
2004年 | 130篇 |
2003年 | 114篇 |
2002年 | 90篇 |
2001年 | 24篇 |
2000年 | 18篇 |
1999年 | 19篇 |
1998年 | 18篇 |
1997年 | 19篇 |
1996年 | 14篇 |
1995年 | 11篇 |
1994年 | 12篇 |
1993年 | 8篇 |
1992年 | 13篇 |
1991年 | 11篇 |
1990年 | 16篇 |
1989年 | 10篇 |
1988年 | 11篇 |
1986年 | 13篇 |
1985年 | 9篇 |
1984年 | 12篇 |
1983年 | 12篇 |
1982年 | 10篇 |
1980年 | 17篇 |
1977年 | 10篇 |
1975年 | 7篇 |
1974年 | 8篇 |
1973年 | 7篇 |
1972年 | 8篇 |
1971年 | 10篇 |
1969年 | 9篇 |
1964年 | 7篇 |
排序方式: 共有3634条查询结果,搜索用时 15 毫秒
61.
Ion channels and transporters are membrane proteins whose functions are driven by conformational changes. Classical biophysical techniques provide insight into either the structure or the function of these proteins, but a full understanding of their behavior requires a correlation of both these aspects in time. Patch-clamp and voltage-clamp fluorometry combine spectroscopic and electrophysiological techniques to simultaneously detect conformational changes and ionic currents across the membrane. Since its introduction, patch-clamp fluorometry has been responsible for invaluable advances in our knowledge of ion channel biophysics. Over the years, the technique has been applied to many different ion channel families to address several biophysical questions with a variety of spectroscopic approaches and electrophysiological configurations. This review illustrates the strength and the flexibility of patch-clamp fluorometry, demonstrating its potential as a tool for future research. 相似文献
62.
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below‐ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above‐ and below‐ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above‐ and below‐ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above‐ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession‐specific accumulated soil communities, by root exudates, or by accession‐specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning. 相似文献
63.
Eleonore Jonas Alexander Dwenger Michael Jonas Michael Nerlich Harald Tscherne 《Luminescence》1993,8(5):253-260
We investigated the effect of prostaglandin E1 on human polymorphonuclear leukocytes, in vivo. Polymorphonuclear leukocytes of a prostaglandin E1 and placebo study group were harvested and their function, as production of oxygen-derived metabolites and adherence to human cultured endothelial cells, was compared. Additionally, data obtained from polymorphonuclear leukocytes of a prostaglandin E1 and placebo group were compared with data obtained from polymorphonuclear leukocytes from 28 blood donors, who served as a control group. Production of oxygen-derived metabolites by polymorphonuclear leukocytes during contact with endothelial cells was measured by chemiluminescence. Chemiluminescence was significantly (p < 0.01) increased in the placebo group in comparison to the control group decreasing to values of control group after 6 d (post-trauma). Chemiluminescence response was not significantly suppressed in patients treated with prostaglandin E1 in comparison to the placebo group. Adherence of polymorphonuclear leukocytes (placebo group) to endothelial cells was significantly increased (p < 0.01) within the first 6 d post-trauma Following day 6, values were in the same range as values for the control group. Adherence was not significantly suppressed in patients treated with prostaglandin E1 in comparison to the placebo group. In conclusion, prostaglandin E1 at a dose of 20 ng/kg bw/min does not influence production of oxygenderived metabolites and adherence in polytraumatized patients in comparison to a placebo group. Additionally, production of oxygen-derived metabolites by polymorphonuclear leukocytes in response to endothelial cells is shown and it is evident that endothelial cells might influence production of oxygen derived metabolites by polymorphonuclear leukocytes. 相似文献
64.
65.
Z Carvalho-Santos P Machado I Alvarez-Martins SM Gouveia SC Jana P Duarte T Amado P Branco MC Freitas ST Silva C Antony TM Bandeiras M Bettencourt-Dias 《Developmental cell》2012,23(2):412-424
Cilia and flagella are involved in a variety of processes and human diseases, including ciliopathies and sterility. Their motility is often controlled by?a central microtubule (MT) pair localized within the ciliary MT-based skeleton, the axoneme. We characterized the formation of the motility apparatus in detail in Drosophila spermatogenesis. We show that assembly of the central MT pair starts prior to the meiotic divisions, with nucleation of a singlet MT within the basal body of a small cilium, and that the second MT of the pair only assembles much later, upon flagella formation. BLD10/CEP135, a conserved player in centriole and flagella biogenesis, can bind and stabilize MTs and is required for the early steps of central MT pair formation. This work describes a genetically tractable system to study motile cilia formation and provides an explanation for BLD10/CEP135's role in assembling highly stable MT-based structures, such as motile axonemes and centrioles. 相似文献
66.
67.
Jana K. Shen 《Biophysical journal》2010,99(3):924-932
The stability and folding of proteins are modulated by energetically significant interactions in the denatured state that is in equilibrium with the native state. These interactions remain largely invisible to current experimental techniques, however, due to the sparse population and conformational heterogeneity of the denatured-state ensemble under folding conditions. Molecular dynamics simulations using physics-based force fields can in principle offer atomistic details of the denatured state. However, practical applications are plagued with the lack of rigorous means to validate microscopic information and deficiencies in force fields and solvent models. This study presents a method based on coupled titration and molecular dynamics sampling of the denatured state starting from the extended sequence under native conditions. The resulting denatured-state pKas allow for the prediction of experimental observables such as pH- and mutation-induced stability changes. I show the capability and use of the method by investigating the electrostatic interactions in the denatured states of wild-type and K12M mutant of NTL9 protein. This study shows that the major errors in electrostatics can be identified by validating the titration properties of the fragment peptides derived from the sequence of the intact protein. Consistent with experimental evidence, our simulations show a significantly depressed pKa for Asp8 in the denatured state of wild-type, which is due to a nonnative interaction between Asp8 and Lys12. Interestingly, the simulation also shows a nonnative interaction between Asp8 and Glu48 in the denatured state of the mutant. I believe the presented method is general and can be applied to extract and validate microscopic electrostatics of the entire folding energy landscape. 相似文献
68.
Nora Wallot-Hieke Neha Verma David Schlütermann Niklas Berleth Jana Deitersen Philip Böhler 《Autophagy》2018,14(5):743-763
Macroautophagy/autophagy is an evolutionarily conserved cellular process whose induction is regulated by the ULK1 protein kinase complex. The subunit ATG13 functions as an adaptor protein by recruiting ULK1, RB1CC1 and ATG101 to a core ULK1 complex. Furthermore, ATG13 directly binds both phospholipids and members of the Atg8 family. The central involvement of ATG13 in complex formation makes it an attractive target for autophagy regulation. Here, we analyzed known interactions of ATG13 with proteins and lipids for their potential modulation of ULK1 complex formation and autophagy induction. Targeting the ATG101-ATG13 interaction showed the strongest autophagy-inhibitory effect, whereas the inhibition of binding to ULK1 or RB1CC1 had only minor effects, emphasizing that mutations interfering with ULK1 complex assembly do not necessarily result in a blockade of autophagy. Furthermore, inhibition of ATG13 binding to phospholipids or Atg8 proteins had only mild effects on autophagy. Generally, the observed phenotypes were more severe when autophagy was induced by MTORC1/2 inhibition compared to amino acid starvation. Collectively, these data establish the interaction between ATG13 and ATG101 as a promising target in disease-settings where the inhibition of autophagy is desired. 相似文献
69.
Introduction
Fibromyalgia is difficult to treat and requires the use of multiple approaches. This study is a randomized controlled trial of qigong compared with a wait-list control group in fibromyalgia.Methods
One hundred participants were randomly assigned to immediate or delayed practice groups, with the delayed group receiving training at the end of the control period. Qigong training (level 1 Chaoyi Fanhuan Qigong, CFQ), given over three half-days, was followed by weekly review/practice sessions for eight weeks; participants were also asked to practice at home for 45 to 60 minutes per day for this interval. Outcomes were pain, impact, sleep, physical function and mental function, and these were recorded at baseline, eight weeks, four months and six months. Immediate and delayed practice groups were analyzed individually compared to the control group, and as a combination group.Results
In both the immediate and delayed treatment groups, CFQ demonstrated significant improvements in pain, impact, sleep, physical function and mental function when compared to the wait-list/usual care control group at eight weeks, with benefits extending beyond this time. Analysis of combined data indicated significant changes for all measures at all times for six months, with only one exception. Post-hoc analysis based on self-reported practice times indicated greater benefit with the per protocol group compared to minimal practice.Conclusions
This study demonstrates that CFQ, a particular form of qigong, provides long-term benefits in several core domains in fibromyalgia. CFQ may be a useful adjuvant self-care treatment for fibromyalgia.Trial registration
clinicaltrials.gov NCT00938834. 相似文献70.
Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis 总被引:1,自引:0,他引:1 下载免费PDF全文
Choi YH Tapias EC Kim HK Lefeber AW Erkelens C Verhoeven JT Brzin J Zel J Verpoorte R 《Plant physiology》2004,135(4):2398-2410
A comprehensive metabolomic profiling of Catharanthus roseus L. G. Don infected by 10 types of phytoplasmas was carried out using one-dimensional and two-dimensional NMR spectroscopy followed by principal component analysis (PCA), an unsupervised clustering method requiring no knowledge of the data set and used to reduce the dimensionality of multivariate data while preserving most of the variance within it. With a combination of these techniques, we were able to identify those metabolites that were present in different levels in phytoplasma-infected C. roseus leaves than in healthy ones. The infection by phytoplasma in C. roseus leaves causes an increase of metabolites related to the biosynthetic pathways of phenylpropanoids or terpenoid indole alkaloids: chlorogenic acid, loganic acid, secologanin, and vindoline. Furthermore, higher abundance of Glc, Glu, polyphenols, succinic acid, and Suc were detected in the phytoplasma-infected leaves. The PCA of the (1)H-NMR signals of healthy and phytoplasma-infected C. roseus leaves shows that these metabolites are major discriminating factors to characterize the phytoplasma-infected C. roseus leaves from healthy ones. Based on the NMR and PCA analysis, it might be suggested that the biosynthetic pathway of terpenoid indole alkaloids, together with that of phenylpropanoids, is stimulated by the infection of phytoplasma. 相似文献