首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3402篇
  免费   194篇
  3596篇
  2023年   21篇
  2022年   47篇
  2021年   89篇
  2020年   70篇
  2019年   72篇
  2018年   104篇
  2017年   93篇
  2016年   124篇
  2015年   158篇
  2014年   207篇
  2013年   254篇
  2012年   321篇
  2011年   287篇
  2010年   178篇
  2009年   144篇
  2008年   212篇
  2007年   171篇
  2006年   187篇
  2005年   162篇
  2004年   125篇
  2003年   112篇
  2002年   88篇
  2001年   25篇
  2000年   14篇
  1999年   19篇
  1998年   18篇
  1997年   21篇
  1996年   14篇
  1995年   10篇
  1994年   12篇
  1992年   10篇
  1991年   8篇
  1990年   13篇
  1989年   9篇
  1988年   9篇
  1986年   13篇
  1985年   9篇
  1984年   12篇
  1983年   12篇
  1982年   10篇
  1980年   17篇
  1977年   10篇
  1976年   7篇
  1975年   7篇
  1974年   8篇
  1973年   7篇
  1972年   8篇
  1971年   10篇
  1969年   9篇
  1964年   7篇
排序方式: 共有3596条查询结果,搜索用时 15 毫秒
71.
The stability and folding of proteins are modulated by energetically significant interactions in the denatured state that is in equilibrium with the native state. These interactions remain largely invisible to current experimental techniques, however, due to the sparse population and conformational heterogeneity of the denatured-state ensemble under folding conditions. Molecular dynamics simulations using physics-based force fields can in principle offer atomistic details of the denatured state. However, practical applications are plagued with the lack of rigorous means to validate microscopic information and deficiencies in force fields and solvent models. This study presents a method based on coupled titration and molecular dynamics sampling of the denatured state starting from the extended sequence under native conditions. The resulting denatured-state pKas allow for the prediction of experimental observables such as pH- and mutation-induced stability changes. I show the capability and use of the method by investigating the electrostatic interactions in the denatured states of wild-type and K12M mutant of NTL9 protein. This study shows that the major errors in electrostatics can be identified by validating the titration properties of the fragment peptides derived from the sequence of the intact protein. Consistent with experimental evidence, our simulations show a significantly depressed pKa for Asp8 in the denatured state of wild-type, which is due to a nonnative interaction between Asp8 and Lys12. Interestingly, the simulation also shows a nonnative interaction between Asp8 and Glu48 in the denatured state of the mutant. I believe the presented method is general and can be applied to extract and validate microscopic electrostatics of the entire folding energy landscape.  相似文献   
72.
Macroautophagy/autophagy is an evolutionarily conserved cellular process whose induction is regulated by the ULK1 protein kinase complex. The subunit ATG13 functions as an adaptor protein by recruiting ULK1, RB1CC1 and ATG101 to a core ULK1 complex. Furthermore, ATG13 directly binds both phospholipids and members of the Atg8 family. The central involvement of ATG13 in complex formation makes it an attractive target for autophagy regulation. Here, we analyzed known interactions of ATG13 with proteins and lipids for their potential modulation of ULK1 complex formation and autophagy induction. Targeting the ATG101-ATG13 interaction showed the strongest autophagy-inhibitory effect, whereas the inhibition of binding to ULK1 or RB1CC1 had only minor effects, emphasizing that mutations interfering with ULK1 complex assembly do not necessarily result in a blockade of autophagy. Furthermore, inhibition of ATG13 binding to phospholipids or Atg8 proteins had only mild effects on autophagy. Generally, the observed phenotypes were more severe when autophagy was induced by MTORC1/2 inhibition compared to amino acid starvation. Collectively, these data establish the interaction between ATG13 and ATG101 as a promising target in disease-settings where the inhibition of autophagy is desired.  相似文献   
73.
Molecular and Cellular Biochemistry - Previously it was shown that for reduction of anxiety and stress of experimental animals, preventive handling seems to be one of the most effective methods....  相似文献   
74.
75.
Allosteric binding sites, as opposed to traditional orthosteric binding sites, offer unparalleled opportunities for drug discovery by providing high levels of selectivity, mimicking physiological conditions, affording fewer side effects because of desensitization/downregulation, and engendering ligands with chemotypes divergent from orthosteric ligands. For kinases, allosteric mechanisms described to date include alteration of protein kinase conformation blocking productive ATP binding which appear 'ATP competitive' or blocking kinase activation by conformational changes that are 'ATP non-competitive'. For GPCRs, allosteric mechanisms impart multiple modes of target modulation (positive allosteric modulation (PAM), negative allosteric modulation (NAM), neutral cooperativity, partial antagonism (PA), allosteric agonism and allosteric antagonism). Here, we review recent developments in the design principles and structural diversity of allosteric ligands for kinases and GPCRs.  相似文献   
76.
77.
WW domain binding protein 1‐like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6‐RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non‐haematopoietic cells. However, its physiological function has been unknown. Here, we show that WBP1L negatively regulates signalling through a critical chemokine receptor CXCR4 in multiple leucocyte subsets and cell lines. We also show that WBP1L interacts with NEDD4‐family ubiquitin ligases and regulates CXCR4 ubiquitination and expression. Moreover, analysis of Wbp1l‐deficient mice revealed alterations in B cell development and enhanced efficiency of bone marrow cell transplantation. Collectively, our data show that WBP1L is a novel regulator of CXCR4 signalling and haematopoiesis.  相似文献   
78.
Cyanobacteria contain several genes coding for small one-helix proteins called SCPs or HLIPs with significant sequence similarity to chlorophyll a/b-binding proteins. To localize one of these proteins, ScpD, in the cells of the cyanobacterium Synechocystis sp. PCC 6803, we constructed several mutants in which ScpD was expressed as a His-tagged protein (ScpDHis). Using two-dimensional native-SDS electrophoresis of thylakoid membranes or isolated Photosystem II (PSII), we determined that after high-light treatment most of the ScpDHis protein in a cell is associated with PSII. The ScpDHis protein was present in both monomeric and dimeric PSII core complexes and also in the core subcomplex lacking CP43. However, the association with PSII was abolished in the mutant lacking the PSII subunit PsbH. In a PSII mutant lacking cytochrome b(559), which does not accumulate PSII, ScpDHis is associated with CP47. The interaction of ScpDHis with PsbH and CP47 was further confirmed by electron microscopy of PSII labeled with Ni-NTA Nanogold. Single particle image analysis identified the location of the labeled ScpDHis at the periphery of the PSII core complex in the vicinity of the PsbH and CP47. Because of the fact that ScpDHis did not form any large structures bound to PSII and because of its accumulation in PSII subcomplexes containing CP47 and PsbH we suggest that ScpD is involved in a process of PSII assembly/repair during the turnover of pigment-binding proteins, particularly CP47.  相似文献   
79.
The yeast communities associated with the stingless bees Tetragonisca angustula, Melipona quadrifasciata and Frieseomelitta varia were studied. The bees T. angustula and F. varia showed a strong association with the yeast Starmerella meliponinorum. M. quadrifasciata more frequently carried a species related to Candida apicola, but also vectored low numbers of S. meliponinorum. Some of the yeasts isolated from adult bees were typical of species known to occur in flowers. Other yeast species found in adult bees were more typical of those found in the phylloplane. S. meliponinorum and the species in the C. apicola complex, also part of the Starmerella clade, may have a mutualistic relationship with the bees studied. Many yeasts in that group are often found in bees or substrates visited by bees, suggesting that a mutually beneficial interaction exists between them.  相似文献   
80.
In this study, we investigated an SBP (DctPAm) of a tripartite ATP‐independent periplasmic transport system (TRAP) in Advenella mimigardefordensis strain DPN7T. Deletion of dctPAm as well as of the two transmembrane compounds of the tripartite transporter, dctQ and dctM, impaired growth of A. mimigardefordensis strain DPN7T, if cultivated on mineral salt medium supplemented with d ‐glucose, d ‐galactose, l ‐arabinose, d ‐fucose, d ‐xylose or d ‐gluconic acid, respectively. The wild type phenotype was restored during complementation studies of A. mimigardefordensis ΔdctPAm using the broad host vector pBBR1MCS‐5::dctPAm. Furthermore, an uptake assay with radiolabeled [14C(U)]‐d ‐glucose clearly showed that the deletion of dctPAm, dctQ and dctM, respectively, disabled the uptake of this aldoses in cells of either mutant strain. Determination of KD performing thermal shift assays showed a shift in the melting temperature of DctPAm in the presence of d ‐gluconic acid (KD 11.76 ± 1.3 µM) and the corresponding aldonic acids to the above‐mentioned carbohydrates d ‐galactonate (KD 10.72 ± 1.4 µM), d ‐fuconic acid (KD 13.50 ± 1.6 µM) and d ‐xylonic acid (KD 8.44 ± 1.0 µM). The sugar (glucose) dehydrogenase activity (E.C.1.1.5.2) in the membrane fraction was shown for all relevant sugars, proving oxidation of the molecules in the periplasm, prior to transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号