首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20149篇
  免费   1561篇
  国内免费   11篇
  21721篇
  2023年   81篇
  2022年   195篇
  2021年   361篇
  2020年   219篇
  2019年   310篇
  2018年   373篇
  2017年   338篇
  2016年   548篇
  2015年   927篇
  2014年   1051篇
  2013年   1314篇
  2012年   1514篇
  2011年   1417篇
  2010年   938篇
  2009年   863篇
  2008年   1122篇
  2007年   1051篇
  2006年   1074篇
  2005年   1041篇
  2004年   977篇
  2003年   854篇
  2002年   902篇
  2001年   250篇
  2000年   200篇
  1999年   240篇
  1998年   265篇
  1997年   198篇
  1996年   217篇
  1995年   194篇
  1994年   211篇
  1993年   205篇
  1992年   181篇
  1991年   142篇
  1990年   116篇
  1989年   132篇
  1988年   130篇
  1987年   91篇
  1986年   92篇
  1985年   115篇
  1984年   140篇
  1983年   101篇
  1982年   132篇
  1981年   103篇
  1980年   97篇
  1979年   80篇
  1978年   76篇
  1977年   72篇
  1976年   48篇
  1974年   48篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Plants respond to environmental stress by synthesizing a range of secondary metabolites for defense purposes. Here we report on the effect of chronic ultraviolet (UV) radiation on the accumulation of plant secondary metabolites in Arabidopsis thaliana leaves. In the natural environment, UV is a highly dynamic environmental parameter and therefore we hypothesized that plants are continuously readjusting levels of secondary metabolites. Our data show distinct kinetic profiles for accumulation of tocopherols, polyamines and flavonoids upon UV acclimation. The lipid‐soluble antioxidant α‐tocopherol accumulated fast and remained elevated. Polyamines accumulated fast and transiently. This fast response implies a role for α‐tocopherol and polyamines in short‐term UV response. In contrast, an additional sustained accumulation of flavonols took place. The distinct accumulation patterns of these secondary metabolites confirm that the UV acclimation process is a dynamic process, and indicates that commonly used single time‐point analyses do not reveal the full extent of UV acclimation. We demonstrate that UV stimulates the accumulation of specific flavonol glycosides, i.e. kaempferol and (to a lesser extent) quercetin di‐ and triglycosides, all specifically rhamnosylated at position seven. All metabolites were identified by Ultra Performance Liquid Chromatography (UPLC)‐coupled tandem mass spectrometry. Some of these flavonol glycosides reached steady‐state levels in 3–4 days, while concentrations of others are still increasing after 12 days of UV exposure. A biochemical pathway for these glycosides is postulated involving 7‐O‐rhamnosylation for the synthesis of all eight metabolites identified. We postulate that this 7‐O‐rhamnosylation has an important function in UV acclimation.  相似文献   
992.
Located at neuronal terminals, the postsynaptic density (PSD) is a highly complex network of cytoskeletal scaffolding and signaling proteins responsible for the transduction and modulation of glutamatergic signaling between neurons. Using ion‐mobility enhanced data‐independent label‐free LC‐MS/MS, we established a reference proteome of crude synaptosomes, synaptic junctions, and PSD derived from mouse hippocampus including TOP3‐based absolute quantification values for identified proteins. The final dataset across all fractions comprised 49 491 peptides corresponding to 4558 protein groups. Of these, 2102 protein groups were identified in highly purified PSD in at least two biological replicates. Identified proteins play pivotal roles in neurological and synaptic processes providing a rich resource for studies on hippocampal PSD function as well as on the pathogenesis of neuropsychiatric disorders. All MS data have been deposited in the ProteomeXchange with identifier PXD000590 ( http://proteomecentral.proteomexchange.org/dataset/PXD000590 ).  相似文献   
993.
994.
In the past, insect species richness was high in Central European seminatural grasslands, which were characterized by low‐intensity land use. Currently, however, the hay in most of these grasslands is mechanically harvested, which negatively impacts insect biodiversity. One way to reduce this negative effect is to leave unmown patches as refuges. In the current research we evaluated the short‐term effects of leaving an unmown patch on the taxonomic and functional diversity of the Orthoptera assemblage in a meadow. We found that orthopteran species richness and abundance were significantly reduced by mowing, whether or not a patch was left uncut. In contrast, functional evenness, indicating distribution of species abundances in a niche space, was reduced by mowing only if the plot lacked an uncut refuge. Functional richness, indicating the amount of niche space occupied by species, was elevated if the plot had an uncut refuge. Larger species were negatively affected by mowing, while habitat specialists, mobile species and soil‐ovipositing species benefitted from it. We infer that the presence of an uncut patch increased the diversity of habitats available to orthopterans and maintained even distribution of species among niche space. In summary, leaving an unmown refuge in grasslands could increase the functional diversity of orthopterans, even if it does not preserve taxonomic diversity.  相似文献   
995.
Soil faunal activity can be a major control of greenhouse gas (GHG) emissions from soil. Effects of single faunal species, genera or families have been investigated, but it is unknown how soil fauna diversity may influence emissions of both carbon dioxide (CO2, end product of decomposition of organic matter) and nitrous oxide (N2O, an intermediate product of N transformation processes, in particular denitrification). Here, we studied how CO2 and N2O emissions are affected by species and species mixtures of up to eight species of detritivorous/fungivorous soil fauna from four different taxonomic groups (earthworms, potworms, mites, springtails) using a microcosm set‐up. We found that higher species richness and increased functional dissimilarity of species mixtures led to increased faunal‐induced CO2 emission (up to 10%), but decreased N2O emission (up to 62%). Large ecosystem engineers such as earthworms were key drivers of both CO2 and N2O emissions. Interestingly, increased biodiversity of other soil fauna in the presence of earthworms decreased faunal‐induced N2O emission despite enhanced C cycling. We conclude that higher soil fauna functional diversity enhanced the intensity of belowground processes, leading to more complete litter decomposition and increased CO2 emission, but concurrently also resulting in more complete denitrification and reduced N2O emission. Our results suggest that increased soil fauna species diversity has the potential to mitigate emissions of N2O from soil ecosystems. Given the loss of soil biodiversity in managed soils, our findings call for adoption of management practices that enhance soil biodiversity and stimulate a functionally diverse faunal community to reduce N2O emissions from managed soils.  相似文献   
996.
Stomatal conductance, one of the major plant physiological controls within NH3 biosphere–atmosphere exchange models, is commonly estimated from semi‐empirical multiplicative schemes or simple light‐ and temperature‐response functions. However, due to their inherent parameterization on meteorological proxy variables, instead of a direct measure of stomatal opening, they are unfit for the use in climate change scenarios and of limited value for interpreting field‐scale measurements. Alternatives based on H2O flux measurements suffer from uncertainties in the partitioning of evapotranspiration at humid sites, as well as a potential decoupling of transpiration from stomatal opening in the presence of hygroscopic particles on leaf surfaces. We argue that these problems may be avoided by directly deriving stomatal conductance from CO2 fluxes instead. We reanalysed a data set of NH3 flux measurements based on CO2‐derived stomatal conductance, confirming the hypothesis that the increasing relevance of stomatal exchange with the onset of vegetation activity caused a rapid decrease of observed NH3 deposition velocities. Finally, we argue that developing more mechanistic representations of NH3 biosphere–atmosphere exchange can be of great benefit in many applications. These range from model‐based flux partitioning, over deposition monitoring using low‐cost samplers and inferential modelling, to a direct response of NH3 exchange to climate change.  相似文献   
997.
Microbeam radiation therapy (MRT), a preclinical form of spatially fractionated radiotherapy, uses an array of microbeams of hard synchrotron X-ray radiation. Recently, compact synchrotron X-ray sources got more attention as they provide essential prerequisites for the translation of MRT into clinics while overcoming the limited access to synchrotron facilities. At the Munich compact light source (MuCLS), one of these novel compact X-ray facilities, a proof of principle experiment was conducted applying MRT to a xenograft tumor mouse model. First, subcutaneous tumors derived from the established squamous carcinoma cell line FaDu were irradiated at a conventional X-ray tube using broadbeam geometry to determine a suitable dose range for the tumor growth delay. For irradiations at the MuCLS, FaDu tumors were irradiated with broadbeam and microbeam irradiation at integral doses of either 3 Gy or 5 Gy and tumor growth delay was measured. Microbeams had a width of 50 µm and a center-to-center distance of 350 µm with peak doses of either 21 Gy or 35 Gy. A dose rate of up to 5 Gy/min was delivered to the tumor. Both doses and modalities delayed the tumor growth compared to a sham-irradiated tumor. The irradiated area and microbeam pattern were verified by staining of the DNA double-strand break marker γH2AX. This study demonstrates for the first time that MRT can be successfully performed in vivo at compact inverse Compton sources.  相似文献   
998.
Encompassing some of the major hotspots of biodiversity on Earth, large mountain systems have long held the attention of evolutionary biologists. The region of the Qinghai‐Tibet Plateau (QTP) is considered a biogeographic source for multiple colonization events into adjacent areas including the northern Palearctic. The faunal exchange between the QTP and adjacent regions could thus represent a one‐way street (“out of” the QTP). However, immigration into the QTP region has so far received only little attention, despite its potential to shape faunal and floral communities of the QTP. In this study, we investigated centers of origin and dispersal routes between the QTP, its forested margins and adjacent regions for five clades of alpine and montane birds of the passerine superfamily Passeroidea. We performed an ancestral area reconstruction using BioGeoBEARS and inferred a time‐calibrated backbone phylogeny for 279 taxa of Passeroidea. The oldest endemic species of the QTP was dated to the early Miocene (ca. 20 Ma). Several additional QTP endemics evolved in the mid to late Miocene (12–7 Ma). The inferred centers of origin and diversification for some of our target clades matched the “out of Tibet hypothesis’ or the “out of Himalayas hypothesis” for others they matched the “into Tibet hypothesis.” Three radiations included multiple independent Pleistocene colonization events to regions as distant as the Western Palearctic and the Nearctic. We conclude that faunal exchange between the QTP and adjacent regions was bidirectional through time, and the QTP region has thus harbored both centers of diversification and centers of immigration.  相似文献   
999.
The synthesis of four chiral NAD+ models 1 and their 1,4-dihydro analogs 2 is described. From the temperature dependence of the 1H-nmr spectra it is concluded that for these compounds two preferred conformations I and II, differing slightly in energy, exist. Both conformations are “folded” with the more or less parallel p-anisyl and pyridine groups mutually gauche, but in I the pyridine group is rotated by about 180° as compared with II, thus leading to a conspicuous difference in orientation of the substituent Z (NH2CO, C6H5NHSO2, (CH2)4NSO2, or (C4H8ON)SO2) in the pyridine ring toward the anisyl group. The most stable conformation (I) has Z closest to the center of the p-anisyl group. In 360-MHz spectra of the dihydropyridines at low temperature (?10°C), slow interconversion of I and II leads to the observation of an XY pattern for the C-4 methylene protons of the 1,4-dihydropyridine system. The anisochronity in this methylene group is caused mainly by the anisotropy of the neighboring p-anisyl group.  相似文献   
1000.
Jan A. D. Zeevaart 《Planta》1978,140(3):289-291
Flower formation was induced in the shortday plant Kalanchoë blossfeldiana Poellnitz under long-day conditions by grafting with flowering shoots of the short-long-day plant Echeveria harmsii (Rose) MacBr. and of the long-day plant Echeveria pulvoliver (E. pulvinata Rose x E. harmsii). Vegetative shoots from induced Echeveria plants failed to cause a flowering response in Kalanchoë. The presence of flowering and vegetative shoots side by side on induced Echeveria plants provides evidence for physiological chimeras in this genus.Abbreviations LD long day(s) - SD short day(s) - LDP long-day plant(s) - LSDP long-short-day plant(s) - SDP short-day plant(s) - SLDP short-long-day plant(s)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号