首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2952篇
  免费   190篇
  国内免费   3篇
  2023年   15篇
  2022年   33篇
  2021年   63篇
  2020年   49篇
  2019年   55篇
  2018年   64篇
  2017年   56篇
  2016年   91篇
  2015年   120篇
  2014年   143篇
  2013年   206篇
  2012年   217篇
  2011年   243篇
  2010年   147篇
  2009年   120篇
  2008年   136篇
  2007年   172篇
  2006年   155篇
  2005年   139篇
  2004年   117篇
  2003年   102篇
  2002年   104篇
  2001年   41篇
  2000年   38篇
  1999年   41篇
  1998年   23篇
  1997年   16篇
  1996年   18篇
  1995年   19篇
  1994年   12篇
  1993年   19篇
  1992年   28篇
  1991年   22篇
  1990年   18篇
  1989年   21篇
  1988年   25篇
  1987年   17篇
  1986年   17篇
  1985年   22篇
  1984年   19篇
  1983年   12篇
  1982年   14篇
  1981年   17篇
  1980年   23篇
  1979年   14篇
  1978年   11篇
  1977年   17篇
  1975年   8篇
  1974年   13篇
  1973年   9篇
排序方式: 共有3145条查询结果,搜索用时 31 毫秒
151.
DNA polymerase iota (Poliota) is a member of the Y family of DNA polymerases, which promote replication through DNA lesions. The role of Poliota in lesion bypass, however, has remained unclear. Poliota is highly unusual in that it incorporates nucleotides opposite different template bases with very different efficiencies and fidelities. Since interactions of DNA polymerases with the DNA minor groove provide for the nearly equivalent efficiencies and fidelities of nucleotide incorporation opposite each of the four template bases, we considered the possibility that Poliota differs from other DNA polymerases in not being as sensitive to distortions of the minor groove at the site of the incipient base pair and that this enables it to incorporate nucleotides opposite highly distorting minor-groove DNA adducts. To check the validity of this idea, we examined whether Poliota could incorporate nucleotides opposite the gamma-HOPdG adduct, which is formed from an initial reaction of acrolein with the N(2) of guanine. We show here that Poliota incorporates a C opposite this adduct with nearly the same efficiency as it does opposite a nonadducted template G residue. The subsequent extension step, however, is performed by Polkappa, which efficiently extends from the C incorporated opposite the adduct. Based upon these observations, we suggest that an important biological role of Poliota and Polkappa is to act sequentially to carry out the efficient and accurate bypass of highly distorting minor-groove DNA adducts of the purine bases.  相似文献   
152.
In the present study, we investigated the mechanisms by which zinc causes growth arrest in colon cancer cells. The results suggest that zinc treatment stabilizes the levels of the wild-type adenomatous polyposis coli (APC) protein at the post-translational level since the APC mRNA levels and the promoter activity of the APC gene were decreased in HCT-116 cells (which express the wild-type APC gene) after treatment with ZnCl2. Increased levels of wild-type but not truncated APC proteins were required for the ZnCl2-mediated G2/M phase arrest in different colon cancer cell lines. We further tested whether serum-stimulation, which induces cell cycle arrest in the S phase, can relieve ZnCl2-induced G2/M phase arrest of HCT-116 cells. Results showed that in the HCT-116 cells pretreated with ZnCl2, the serum-stimulation neither changed the distribution of G2/M phase arrested cells nor the increased levels of APC protein. The G2/M phase arrest correlated with retarded growth of HCT-116 cells. To further establish that wild-type APC protein plays a role in ZnCl2-induced G2/M arrest, we treated SW480 colon cancer cells that express truncated APC protein. We found that ZnCl2 treatment did not induce G2/M phase arrest in SW480 cells; however, the cell growth was retarded due to the loss of E-cadherin and alpha-tubulin levels. These results suggest that ZnCl2 inhibits the proliferation of colon cancer cells (which carry the wild-type APC gene) through stabilization of the APC protein and cell cycle arrest in the G2/M phase. On the other hand, ZnCl2 inhibits the proliferation of colon cancer cells (which carry the mutant APC gene) by disrupting cellular attachment and microtubule stability.  相似文献   
153.
A wide variety of phenolic compounds and flavonoids present in spices possess potent antioxidant, antimutagenic and anticarcinogenic activities. We examined whether 5-lipoxygenase (5-LO), the key enzyme involved in biosynthesis of leukotrienes is a possible target for the spices. Effect of aqueous extracts of turmeric, cloves, pepper, chili, cinnamon, onion and also their respective active principles viz., curcumin, eugenol, piperine, capsaicin, cinnamaldehyde, quercetin, and allyl sulfide were tested on human PMNL 5-LO activity by spectrophotomeric and HPLC methods. The formation of 5-LO product 5-HETE was significantly inhibited in a concentration-dependent manner with IC(50) values of 0.122-1.44 mg for aqueous extracts of spices and 25-83 microM for active principles, respectively. The order of inhibitory activity was of quercetin>eugenol>curcumin>cinnamaldehyde>piperine>capsaicin>allyl sulfide. Quercetin, eugenol and curcumin with one or more phenolic ring and methoxy groups in their structure showed high inhibitory effect, while the non-phenolic spice principle allyl sulfide showed least inhibitory effect on 5-LO. The inhibitory effect of quercetin, curcumin and eugenol was similar to that of synthetic 5-LO inhibitors-phenidone and NDGA. Moreover, the inhibitory potency of aqueous extracts of spice correlated with the active principles of their respective spices. The synergistic or antagonistic effect of mixtures of spice active principles and spice extracts were investigated and all the combinations of spice active principles/extracts exerted synergistic effect in inhibiting 5-LO activity. These findings clearly suggest that phenolic compounds present in spices might have physiological role in modulating 5-LO pathway.  相似文献   
154.
An amperometric silica sol-gel film immobilized biosensor doped with acetylcholinesterase was fabricated in the laboratory finding application in organophosphate detection based on enzyme inhibition. The substrate used was acetylthiocholine chloride and thiocholine released from the enzymatic hydrolysis was electrochemically oxidized giving larger anodic current at 0.5-0.6 V (versus Ag/AgCl reference). The dependencies of the current response on pH, enzyme loading and thermal stability of the developed biosensor were evaluated. The analytical performance of enzyme electrode towards substrate and inhibitor was investigated. Oxydemeton methyl was taken as a model compound for the inhibition studies. Linear calibration for oxydemeton methyl was obtained in the range of 2-200 ppb under the optimized conditions following an incubation time of 20 min. Treatment of the inhibited enzyme with pyridine-2-aldehyde restored 92% of its original activity. The sensor stored at -20 degrees C had a good storage and operational stability retaining 85% of its original activity for 60 successive measurements.  相似文献   
155.
Thirty mesophilic and thermophilic bacteria were isolated from thermobiotically digested sewage sludge in culture medium supplemented with poly-ε-caprolactone (PCL). The ability of each purified isolate to degrade PCL and to produce polymer-degrading extracellular enzymes was assessed. Isolates were characterized based on random amplified polymorphic DNA (RAPD), 16S rDNA sequence-based phylogenetic affiliation and carbohydrate-based nutritional versatility. Mesophilic isolates with ability to degrade PCL were attributed to the genera Acinetobacter, Burkholderia, Pseudomonas, and Staphylococcus. Thermophilic isolates were members of the genus Bacillus. Despite the restricted phylogenetic and genotypic diversity observed for thermophiles, their metabolic versatility and wide range of growth temperatures suggest an important activity of these organisms during the whole composting process.  相似文献   
156.
Mitochondrial permeability transition (mPT) is a crucial event in the progression to cell death in the setting of ischemia-reperfusion. We have used a model system in which mPT can be reliably and reproducibly induced to test the hypothesis that the profound protection associated with the phenomenon of myocardial preconditioning is mediated by suppression of the mPT. Adult rat myocytes were loaded with the fluorescent probe tetramethylrhodamine methyl ester, which generates oxidative stress on laser illumination, thus inducing the mPT (indicated by collapse of the mitochondrial membrane potential) and ATP depletion, seen as rigor contracture. The known inhibitors of the mPT, cyclosporin A (0.2 microM) and N-methyl-4-valine-cyclosporin A (0.4 microM), increased the time taken to induce the mPT by 1.8- and 2.9-fold, respectively, compared with control (P < 0.001) and rigor contracture by 1.5-fold compared with control (P < 0.001). Hypoxic preconditioning (HP) and pharmacological preconditioning, using diazoxide (30 microM) or nicorandil (100 microM), also increased the time taken to induce the mPT by 2.0-, 2.1-, and 1.5-fold, respectively (P < 0.001), and rigor contracture by 1.9-, 1.7-, and 1.5-fold, respectively, compared with control (P < 0.001). Effects of HP, diazoxide, and nicorandil were abolished in the presence of mitochondrial ATP-sensitive K(+) (K(ATP)) channel blockers glibenclamide (10 microM) and 5-hydroxydecanoate (100 microM) but were maintained in the presence of the sarcolemmal K(ATP) channel blocker HMR-1098 (10 microM). In conclusion, preconditioning protects the myocardium by reducing the probability of the mPT, which normally occurs during ischemia-reperfusion in response to oxidative stress.  相似文献   
157.
We developed a SHIV/macaque model of transmission from infected dams to their infants. Ten pregnant dams were infected intravenously with 100 MID(50) of macaque-titered SHIV-SF162P3 during the second trimester. Nine infants were born; the seven surviving beyond day of birth suckled for 6 months. Four of nine infants were infected (transmission rate = 44.4%), with one infection in utero, and three intrapartum and/or immediately post-birth via suckling. Varying levels of binding and neutralizing antibodies were transplacentally transferred to infants. Passive antibodies were detected in plasma on the day of birth and persisted for 5 weeks. Infants infected at or after birth controlled acute and post-acute viremia. Exposure to maternal SHIV-SF162P3 during birth and suckling in the presence of autologous maternal neutralizing antibodies may have affected transmission or pathogenesis in the infants. This transmission model can allow investigation of key parameters involved in perinatal transmission of HIV.  相似文献   
158.
Despite the existence of a preventative vaccine, HBV represents a substantial threat to public health, suggesting the need for research to develop new treatments to combat the disease. The authors review the available in vitro and in vivo models, including recently developed transgenic and chimeric mouse models.  相似文献   
159.
The structure of Gd-DTPA-polylysine, Gd-DOTA-polylysine, Gd-SCN-Bz-DOTA-polylysine, and Gd-DTPA-poly(glu:lys) was investigated with circular dichroism, gel permeation chromatography, low angle light scattering, and proton longitudinal relaxivity. Molecular modeling calculations were performed and predicted helical secondary structure for charged Gd-chelator residues, i.e., Gd-DTPA, when the DTPA conjugation levels reached 90% and higher. This helical secondary structure was observed with circular dichroism. The conformational transition from coiled to extended linear was observed also by gel permeation chromatography and by proton relaxivity measurements. The helical secondary structure was not observed when the chelator was changed to DOTA. The residue charge interactions were eliminated in this case since the Gd-DOTA complex had no net charge. For this construct, the gel permeation and relaxivity measurements indicated a coiled conformation. An extended linear conformation was regained when the chelator complex was changed to Gd-SCN-Bz-DOTA, which had a net negative charge. The functional aspects of these structures were investigated by MR imaging of an animal tumor model. The linear extended polymer constructs gave 10-fold higher tumor signals then the coiled-collapsed constructs, indicating a much higher degree of trans-endothelial transport in the tumors.  相似文献   
160.
The Schizosaccharomyces pombe septation initiation network (SIN) triggers actomyosin ring constriction, septation, and cell division. It is organized at the spindle pole body (SPB) by the scaffold proteins Sid4p and Cdc11p. Here, we dissect the contributions of Sid4p and Cdc11p in anchoring SIN components and SIN regulators to the SPB. We find that Sid4p interacts with the SIN activator, Plo1p, in addition to Cdc11p and Dma1p. While the C terminus of Cdc11p is involved in binding Sid4p, its N-terminal half is involved in a wide variety of direct protein-protein interactions, including those with Spg1p, Sid2p, Cdc16p, and Cdk1p-Cdc13p. Given that the localizations of the remaining SIN components depend on Spg1p or Cdc16p, these data allow us to build a comprehensive model of SIN component organization at the SPB. FRAP experiments indicate that Sid4p and Cdc11p are stable SPB components, whereas signaling components of the SIN are dynamically associated with these structures. Our results suggest that the Sid4p-Cdc11p complex organizes a signaling hub on the SPB and that this hub coordinates cell and nuclear division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号