首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   13篇
  2013年   11篇
  2012年   9篇
  2011年   12篇
  2010年   6篇
  2009年   10篇
  2008年   14篇
  2007年   15篇
  2006年   6篇
  2005年   12篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
排序方式: 共有179条查询结果,搜索用时 187 毫秒
61.
Ghrelin (G-HH) synthesized in several tissues including salivary and stomach glands stimulates appetite in humans by modulating neuropeptide Y neurons in the hypothalamic arcuate nucleus. Loss of appetite is one of the most important symptoms of stomach cancer. We conducted a study using immunohistochemistry to determine whether salivary glands and stomach cancer tissues produce ghrelin. We determined that negative ghrelin immunohistochemistry discriminates tumors from normal tissues and may therefore further our understanding of the clinically important problem of reduced food intake and anorexia in cancer patients. Radioimmunoassay analyses confirmed that cancer cells do not produce a G-HH peptide, whereas normal cells yield this peptide.  相似文献   
62.
The class B family of G-protein-coupled receptors (GPCRs) regulates essential physiological functions such as exocrine and endocrine secretions, feeding behaviour, metabolism, growth, and neuro- and immuno-modulations. These receptors are activated by endogenous peptide hormones including secretin, glucagon, vasoactive intestinal peptide, corticotropin-releasing factor and parathyroid hormone. We have identified a common structural motif that is encoded in all class B GPCR-ligand N-terminal sequences. We propose that this local structure, a helix N-capping motif, is formed upon receptor binding and constitutes a key element underlying class B GPCR activation. The folded backbone conformation imposed by the capping structure could serve as a template for a rational design of drugs targeting class B GPCRs in several diseases.  相似文献   
63.
    
Summary With peptide substrates, the penicillin-sensitive dd-peptidases exhibit a strict specificity for d-Ala-d-Xaa C-termini. Only glycine is tolerated as the C-terminal residue, but with a significantly decreased activity. These enzymes also hydrolyse various ester and thiolester analogues of their natural substrates. Some of the thiolesters whose C-terminal leaving group exhibited an l stereochemistry were significantly hydrolysed by some of the studied enzymes, particularly by the Actinomadura R39 dd-peptidase. By contrast, the strict specificity for a d residue in the penultimate position was fully retained. The same esters and thiolesters also behaved as substrates for -lactamases. In this case, thiolesters exhibiting l stereochemistry in the C-terminal position could also be hydrolysed, mainly by the class C and class D enzymes. But, more surprisingly, the class C Enterobacter cloacae P99 -lactamase also hydrolysed thiolesters containing an l residue in the penultimate position, sometimes more efficiently than the d isomer.  相似文献   
64.
DsbA is the strongest protein disulfide oxidant yet known and is involved in catalyzing protein folding in the bacterial periplasm. Its strong oxidizing power has been attributed to the lowered pKa of its reactive active site cysteine and to the difference in thermodynamic stability between the oxidized and the reduced form. However, no structural data are available for the reduced state. Therefore, an NMR study of DsbA in its two redox states was undertaken. We report here the backbone 1HN, 15N, 13C(alpha) 13CO, 1H(alpha), and 13Cbeta NMR assignments for both oxidized and reduced Escherichia coli DsbA (189 residues). Ninety-nine percent of the frequencies were assigned using a combination of triple (1H-13C-15N) and double resonance (1H-15N or 1H-13C) experiments. Secondary structures were established using the CSI (Chemical Shift Index) method, NOE connectivity patterns, 3(J)H(N)H(alpha) and amide proton exchange data. Comparison of chemical shifts for both forms reveals four regions of the protein, which undergo some changes in the electronic environment. These regions are around the active site (residues 26 to 43), around His60 and Pro 151, and also around Gln97. Both the number and the amplitude of observed chemical shift variations are more substantial in DsbA than in E. coli thioredoxin. Large 13C(alpha) chemical shift variations for residues of the active site and residues Phe28, Tyr34, Phe36, Ile42, Ser43, and Lys98 suggest that the backbone conformation of these residues is affected upon reduction.  相似文献   
65.
66.
A structural model of the murine PrP small beta-sheet was obtained by synthesizing the RGYMLGSADPNGNQVYYRG peptide comprising the two beta-strands 127-133 and 159-164 linked by a four-residue sequence of high turn propensity. The DPNG turn sequence is a "short circuit" replacing the original protein sequence between the two strands. This 19-residue peptide spontaneously forms very long single fibrils as observed by electron microscopy. The X-ray diffraction patterns of a partially oriented sample reveals an average arrangement of the hairpin peptides into a structure which can be geometrically approximated by an empty-core cylinder. The hairpins are oriented perpendicular to the cylinder axis and a 130 A helix period is observed. Based on X-ray diffraction constraints and on more indirect general protein structure considerations, a precise and consistent fibril model was built. The structure consists of two beta-sheet ribbons wound around a cylinder and assembled into a single fibril with a hairpin orientation perpendicular to the fibril axis. Subsequent implicit and explicit solvent molecular dynamics simulations provided the final structure at atomic resolution and further insights into the stabilizing interactions. Particularly important are the zipper-like network of polar interactions between the edges of the two ribbons, including the partially buried water molecules. The hydrophobic core is not optimally compact explaining the low density of this region seen by X-ray diffraction. The present findings provide also a simple model for further investigating the sequence-stability relationship using a mutational approach with a quasi-independent consideration of the polar and apolar interactions.  相似文献   
67.
We previously defined a cholesterol recognition/interaction amino acid consensus sequence [CRAC: L/V-X (1-5)-Y-X (1-5)-R/K] in the carboxyl terminus of the peripheral-type benzodiazepine receptor (PBR), a high-affinity drug and cholesterol-binding protein present in the outer mitochondrial membrane protein. This protein is involved in the regulation of cholesterol transport into the mitochondria, the rate-determining step in steroid biosynthesis. Reconstituted wild-type recombinant PBR into proteoliposomes demonstrated high-affinity 2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide and cholesterol binding. In the present work, we functionally and structurally characterized this CRAC motif using reconstituted recombinant PBR and nuclear magnetic resonance. Deletion of the C-terminal domain of PBR and mutation of the highly conserved among all PBR amino acid sequences Y152 of the CRAC domain resulted in loss of the ability of mutant recPBR to bind cholesterol. Nuclear magnetic resonance analysis of a PBR C-terminal peptide (144-169) containing the CRAC domain indicated a helical conformation for the L144-S159 fragment. As a result of the side-chain distribution, a groove that could fit a cholesterol molecule is delineated, on one hand, by Y152, T148, and L144, and, on the other hand, by Y153, M149, and A145. The aromatic rings of Y152 and Y153 assigned as essential residues for cholesterol binding constitute the gate of the groove. Furthermore, the side chain of R156 may cap the groove by interacting with the sterol hydroxyl group. These results provide structural and functional evidence supporting the finding that the CRAC domain in the cytosolic carboxyl-terminal domain of PBR might be responsible for the uptake and translocation of cholesterol into the mitochondria.  相似文献   
68.
Previous studies have indicated that mature B cells reactivate secondary V(D)J recombination inside and outside the germinal center (GC) of peripheral lymphoid organs. The nature of the B cells undergoing Ig rearrangement before they enter GC is unknown. In this study, we present evidence that activated mature CD5-positive human tonsil B cells coexpress both RAG1 and RAG2 mRNA and protein, and display DNA cleavage resulting from their recombinase activity. Furthermore, in vitro activation of CD5-negative naive mature B cells by IgR and CD40 cross-linking induces expression of CD5 on a subset of cells, and leads to the up-regulation of RAG1 and RAG2 only in cells turned positive for CD5. Thus, RAG gene expression is closely related to CD5 expression outside GCs. These data suggest that CD5 is associated with receptor revision in activated mature B cells and likely to promote expression of suitable IgR capable of initiating the GC reaction.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号