首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2153篇
  免费   169篇
  国内免费   1篇
  2024年   4篇
  2023年   15篇
  2022年   35篇
  2021年   70篇
  2020年   43篇
  2019年   49篇
  2018年   51篇
  2017年   39篇
  2016年   69篇
  2015年   126篇
  2014年   146篇
  2013年   146篇
  2012年   223篇
  2011年   201篇
  2010年   131篇
  2009年   96篇
  2008年   155篇
  2007年   144篇
  2006年   121篇
  2005年   109篇
  2004年   93篇
  2003年   85篇
  2002年   72篇
  2001年   17篇
  2000年   10篇
  1999年   11篇
  1998年   13篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有2323条查询结果,搜索用时 15 毫秒
941.
The filamentous Section V cyanobacterium Mastigocladus laminosus is one of the most morphologically complex prokaryotes. It exhibits cellular division in multiple planes, resulting in the formation of true branches, and cell differentiation into heterocysts, hormogonia and necridia. Here, we investigate branch formation and intercellular communication in M. laminosus. Monitoring of membrane rearrangement suggests that branch formation results from a randomized direction of cell growth. Transmission electron microscopy reveals cell junction structures likely to be involved in intercellular communication. We identify a sepJ gene, coding for a potential key protein in intercellular communication, and show that SepJ is localized at the septa. To directly investigate intercellular communication, we loaded the fluorescent tracer 5‐carboxyfluorescein diacetate into the cytoplasm, and quantified its intercellular exchange by fluorescence recovery after photobleaching. Results demonstrate connectivity of the main trichome and branches, enabling molecular exchange throughout the filament network. Necridia formation inhibits further molecular exchange, determining the fate of a branch likely to become a hormogonium. Cells in young, narrow trichomes and hormogonia exhibited faster exchange rates than cells in older, wider trichomes. Signal transduction to co‐ordinate movement of hormogonia might be accelerated by reducing cell volume.  相似文献   
942.
Proliferation of filamentous fungi following ingress of oxygen to silage is an important cause of dry matter losses, resulting in significant waste. In addition, the production of mycotoxins by some filamentous fungi poses a risk to animal health through mycotoxicosis. Quantitative assessment of fungal growth in silage, through measurement of ergosterol content, colony-forming units or temperature increase is limiting in representing fungal growth dynamics during aerobic spoilage due to being deficient in either representing fungal biomass or being able to identify specific genera. Here, we conducted a controlled environment aerobic exposure experiment to test the efficacy of a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) to detect the proliferation of fungal biomass in six silage samples. We compared this to temperature which has been traditionally deployed in such experiments and on-farm to detect aerobic deterioration. In addition, we quantified ergosterol, a second marker of fungal biomass. After 8 days post-aerobic exposure, the ergosterol and ELISA methods indicated an increase in fungal biomass in one of the samples with a temperature increase observed after 16 days. A comparison of the methods with Pearson's correlation coefficient showed a positive association between temperature and ergosterol and both markers of fungal biomass. This work indicates that the technology has potential to be used as an indicator of microbial degradation in preserved forage. Consequently, if it developed as an on-farm technique, this could inform forage management decisions made by farmers, with the goal of decreasing dry matter losses, improving resource and nutrient efficiency and reducing risks to animal health.  相似文献   
943.
Comparative phylogeographic studies often support shared divergence times for co-distributed species with similar life histories and habitat specializations. During the late Holocene, West Africa experienced aridification and the turnover of rain forest habitats into savannas. These fragmented rain forests harbor impressive numbers of endemic and threatened species. In this setting, populations of co-distributed rain forest species are expected to have diverged simultaneously, whereas divergence events for species adapted to savanna and forest-edge habitats should be absent or idiosyncratic. We conducted a Bayesian analysis of shared evolutionary events to test models of population divergence for 20 species of anurans (frogs) and squamates (lizards and snakes) that are distributed across the Dahomey Gap, a climate change-induced savanna barrier responsible for fragmenting previously contiguous rain forests of Ghana into two regions: the Togo-Volta Hills and the Southwestern Forests. A model of asynchronous diversification is supported for anurans and squamates, suggesting that drivers of diversification are not specifically related to ecological and life history associations with habitat types. Instead, the wide variability of genetic divergence histories exhibited by these species suggests that biodiversity in this region has been shaped by diversification events that extend beyond the Holocene. Comparisons of the genealogical divergence index, a measure of the genetic divergence between populations due to the combined effects of genetic isolation and gene flow, illustrate that these populations represent a broad sampling of the speciation continuum.  相似文献   
944.
Although B cell depletion therapy (BCDT) is effective in a subset of rheumatoid arthritis (RA) patients, both mechanisms and biomarkers of response are poorly defined. Here we characterized abnormalities in B cell populations in RA and the impact of BCDT in order to elucidate B cell roles in the disease and response biomarkers. In active RA patients both CD27+IgD- switched memory (SM) and CD27-IgD- double negative memory (DN) peripheral blood B cells contained significantly higher fractions of CD95+ and CD21- activated cells compared to healthy controls. After BCD the predominant B cell populations were memory, and residual memory B cells displayed a high fraction of CD21- and CD95+ compared to pre-depletion indicating some resistance of these activated populations to anti-CD20. The residual memory populations also expressed more Ki-67 compared to pre-treatment, suggesting homeostatic proliferation in the B cell depleted state. Biomarkers of clinical response included lower CD95+ activated memory B cells at depletion time points and a higher ratio of transitional B cells to memory at reconstitution. B cell function in terms of cytokine secretion was dependent on B cell subset and changed with BCD. Thus, SM B cells produced pro-inflammatory (TNF) over regulatory (IL10) cytokines as compared to naïve/transitional. Notably, B cell TNF production decreased after BCDT and reconstitution compared to untreated RA. Our results support the hypothesis that the clinical and immunological outcome of BCDT depends on the relative balance of protective and pathogenic B cell subsets established after B cell depletion and repopulation.  相似文献   
945.
Pulmonary alveolar proteinosis is associated with impaired alveolar macrophage differentiation due to genetic defects in the granulocyte macrophage colony-stimulating factor (GM-CSF) axis or autoantibody blockade of GM-CSF. The anti-GM-CSFRα antibody mavrilimumab has shown clinical benefit in patients with rheumatoid arthritis, but with no accompanying pulmonary pathology observed to date. We aimed to model systemic versus pulmonary pharmacodynamics of an anti-GM-CSFRα antibody to understand the pharmacology that contributes to this therapeutic margin. Mice were dosed intraperitoneal with anti-GM-CSFRα antibody, and pharmacodynamics bioassays for GM-CSFRα inhibition performed on blood and bronchoalveolar lavage (BAL) cells to quantify coverage in the circulation and lung, respectively. A single dose of 3 mg/kg of the anti-GM-CSFRα antibody saturated the systemic cellular pool, but dosing up to 10 times higher had no effect on the responsiveness of BAL cells to GM-CSF. Continued administration of this dose of anti-GM-CSFRα antibody for 7 consecutive days also had no inhibitory effect on these cells. Partial inhibition of GM-CSFRα function on cells from the BAL was only observed after dosing for 5 or 7 consecutive days at 30 mg/kg, 10-fold higher than the proposed therapeutic dose. In conclusion, dosing with anti-GM-CSFRα antibody using regimes that saturate circulating cells, and have been shown to be efficacious in inflammatory arthritis models, did not lead to complete blockade of the alveolar macrophages response to GM-CSF. This suggests a significant therapeutic window is possible with GM-CSF axis inhibition.  相似文献   
946.

Background  

The tumor suppressor DLC2 (Deleted in Liver Cancer -2) participates in cell signaling at the mitochondrial membrane. DLC2 is characterized by a SAM (sterile alpha motif) domain, a Rho GTPase activating protein (GAP) domain, and a START lipid transfer domain.  相似文献   
947.
Netrin-1, acting through its principal receptor DCC (deleted in colorectal cancer), serves as an axon guidance cue during neural development and also contributes to vascular morphogenesis, epithelial migration, and the pathogenesis of some tumors. Several lines of evidence suggest that netrin-DCC signaling can regulate and be regulated by the cAMP-dependent protein kinase, PKA, although the molecular details of this relationship are poorly understood. Specificity in PKA signaling is often achieved through differential subcellular localization of the enzyme by interaction with protein kinase A anchoring proteins (AKAPs). Here, we show that AKAP function is required for DCC-mediated activation of PKA and phosphorylation of cytoskeletal regulatory proteins of the Mena/VASP (vasodilator-stimulated phosphoprotein) family. Moreover, we show that DCC and PKA physically interact and that this association is mediated by the ezrin-radixin-moesin (ERM) family of plasma membrane-actin cytoskeleton cross-linking proteins. Silencing of ERM protein expression inhibits DCC-PKA interaction, DCC-mediated PKA activation, and phosphorylation of Mena/VASP proteins as well as growth cone morphology and neurite outgrowth. Finally, although expression of wild-type radixin partially rescued growth cone morphology and tropism toward netrin in ERM-knockdown cells, expression of an AKAP-deficient mutant of radixin did not fully rescue growth cone morphology and switched netrin tropism from attraction to repulsion. These data support a model in which ERM-mediated anchoring of PKA activity to DCC is required for proper netrin/DCC-mediated signaling.  相似文献   
948.
Most legume phylogenies have relied heavily on plastid gene datasets, with or without nuclear ribosomal DNA ITS data, but the sequences of nuclear genes and gene-spanning regions offer certain advantages. We tested the phylogenetic utility of five nuclear loci across the species-rich legume clade Hologalegina: PGDH, TRPT, HRIP, RNAR, and CNGC4 (CNGC4-like protein). Our objective was to determine whether any of these nuclear loci could be beneficial at resolving lower-level phylogenetic relationships in this clade, with a particular interest in finding markers that might work at the species level. While the phylogenetic utility of these nuclear loci is unknown outside of Hologalegina, we determined that two of the loci, PGDH and TRPT, are useful for phylogenetic analyses within Hologalegina, depending upon the desired scale of resolution.  相似文献   
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号