首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2154篇
  免费   170篇
  国内免费   1篇
  2024年   3篇
  2023年   15篇
  2022年   32篇
  2021年   72篇
  2020年   43篇
  2019年   49篇
  2018年   51篇
  2017年   39篇
  2016年   69篇
  2015年   130篇
  2014年   147篇
  2013年   147篇
  2012年   224篇
  2011年   202篇
  2010年   131篇
  2009年   98篇
  2008年   155篇
  2007年   145篇
  2006年   121篇
  2005年   109篇
  2004年   95篇
  2003年   85篇
  2002年   72篇
  2001年   17篇
  2000年   10篇
  1999年   11篇
  1998年   13篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1994年   3篇
  1993年   7篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有2325条查询结果,搜索用时 15 毫秒
11.
Hemp (Cannabis sativa L.) is an emerging dioecious crop grown primarily for grain, fiber, and cannabinoids. There is good evidence for medicinal benefits of the most abundant cannabinoid in hemp, cannabidiol (CBD). For CBD production, female plants producing CBD but not tetrahydrocannabinol (THC) are desired. We developed and validated high‐throughput PACE (PCR Allele Competitive Extension) assays for C. sativa plant sex and cannabinoid chemotype. The sex assay was validated across a wide range of germplasm and resolved male plants from female and monoecious plants. The cannabinoid chemotype assay revealed segregation in hemp populations, and resolved plants producing predominantly THC, predominantly CBD, and roughly equal amounts of THC and CBD. Cultivar populations that were thought to be stabilized for CBD production were found to be segregating phenotypically and genotypically. Many plants predominantly producing CBD accumulated more than the current US legal limit of 0.3% THC by dry weight. These assays and data provide potentially useful tools for breeding and early selection of hemp.  相似文献   
12.
13.
Both coral‐associated bacteria and endosymbiotic algae (Symbiodiniaceae spp.) are vitally important for the biological function of corals. Yet little is known about their co‐occurrence within corals, how their diversity varies across coral species, or how they are impacted by anthropogenic disturbances. Here, we sampled coral colonies (n = 472) from seven species, encompassing a range of life history traits, across a gradient of chronic human disturbance (n = 11 sites on Kiritimati [Christmas] atoll) in the central equatorial Pacific, and quantified the sequence assemblages and community structure of their associated Symbiodiniaceae and bacterial communities. Although Symbiodiniaceae alpha diversity did not vary with chronic human disturbance, disturbance was consistently associated with higher bacterial Shannon diversity and richness, with bacterial richness by sample almost doubling from sites with low to very high disturbance. Chronic disturbance was also associated with altered microbial beta diversity for Symbiodiniaceae and bacteria, including changes in community structure for both and increased variation (dispersion) of the Symbiodiniaceae communities. We also found concordance between Symbiodiniaceae and bacterial community structure, when all corals were considered together, and individually for two massive species, Hydnophora microconos and Porites lobata, implying that symbionts and bacteria respond similarly to human disturbance in these species. Finally, we found that the dominant Symbiodiniaceae ancestral lineage in a coral colony was associated with differential abundances of several distinct bacterial taxa. These results suggest that increased beta diversity of Symbiodiniaceae and bacterial communities may be a reliable indicator of stress in the coral microbiome, and that there may be concordant responses to chronic disturbance between these communities at the whole‐ecosystem scale.  相似文献   
14.
We used microsatellite markers to investigate levels and structuring of genetic diversity in trout (Salmo trutta L.) sampled from 16 rivers along the south coast of Cornwall in southwest England. This region is characterized by many small coastal streams with a few larger catchments. At a regional level, genetic structuring of contemporary populations has been influenced by a combination of events, including the last Ice Age and also more recent human activities over the last millennium. All populations are shown to have gone through strong genetic bottlenecks, coinciding with increased exploitation of mineral resources within catchments, beginning during the Medieval period. At more local levels, contemporary human‐induced habitat fragmentation, such as weir and culvert construction, has disproportionally affected trout populations in the smaller catchments within the study area. However, where small catchments are relatively unaffected by such activities, they can host trout populations with diversity levels comparable to those found in larger rivers in the region. We also predict significant future loses of diversity and heterozygosity in the trout populations inhabiting small, isolated catchments. Our study highlights how multiple factors, especially the activity of humans, have and continue to affect the levels and structuring of genetic diversity in trout over long timescales.  相似文献   
15.
Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available.  相似文献   
16.
IntroductionPediatric patients with cardiomyopathies are at risk for sudden death and may need implantable cardioverter defibrillators (ICD’s), but given their small size and duration of use, children are at increased risk for complications associated with ICD use. The subcutaneous ICD presents a favorable option for children without pacing indications. Unfortunately, initial pediatric studies have demonstrated a high complication rate, likely due to the 3-incision technique employed.Material and methodsPatients with ICD but no pacing indication were retrospectively reviewed after implantation of subcutaneous ICD via the two-incision technique. In half of the patients, 10-J impedance test was also performed to compare with impedance obtained after defibrillation threshold testing with 65-J.ResultsTwelve patients were included. The median age was 14 years (range 10–16 years) with eight males included (72.7%). The median weight was 55 kg (range 29 kg–75.1 kg). Follow-up had a median of 11.5 months (range 2–27 months). The median body mass index was 18.4 kg/m squared (range 15.5–27.9 kg/m squared). One patient suffered a minor complication after tearing off the incisional adhesive strips early and required a non-invasive repair in clinic. Shock impedance had a median of 55 J (range 48–68 J). There was one appropriate shock/charge and no inappropriate shocks during follow-up.ConclusionThe two-incision, intermuscular technique appears to have a lower acute complication rate than prior reports, in our cohort of 12 pediatric patients.  相似文献   
17.
Bacterial biofilms are communities of bacteria entangled in a self‐produced extracellular matrix (ECM). Escherichia coli direct the assembly of two insoluble biopolymers, curli amyloid fibers, and phosphoethanolamine (pEtN) cellulose, to build remarkable biofilm architectures. Intense curiosity surrounds how bacteria harness these amyloid‐polysaccharide composites to build biofilms, and how these biopolymers function to benefit bacterial communities. Defining ECM composition involving insoluble polymeric assemblies poses unique challenges to analysis and, thus, to comparing strains with quantitative ECM molecular correlates. In this work, we present results from a sum‐of‐the‐parts 13C solid‐state nuclear magnetic resonance (NMR) analysis to define the curli‐to‐pEtN cellulose ratio in the isolated ECM of the E. coli laboratory K12 strain, AR3110. We compare and contrast the compositional analysis and comprehensive biofilm phenotypes for AR3110 and a well‐studied clinical isolate, UTI89. The ECM isolated from AR3110 contains approximately twice the amount of pEtN cellulose relative to curli content as UTI89, revealing plasticity in matrix assembly principles among strains. The two parent strains and a panel of relevant gene mutants were investigated in three biofilm models, examining: (a) macrocolonies on agar, (b) pellicles at the liquid‐air interface, and (c) biomass accumulation on plastic. We describe the influence of curli, cellulose, and the pEtN modification on biofilm phenotypes with power in the direct comparison of these strains. The results suggest that curli more strongly influence adhesion, while pEtN cellulose drives cohesion. Their individual and combined influence depends on both the biofilm modality (agar, pellicle, or plastic‐associated) and the strain itself.  相似文献   
18.
Host plant specialization is a major force driving ecological niche partitioning and diversification in insect herbivores. The cyanogenic defences of Passiflora plants keep most herbivores at bay, but not the larvae of Heliconius butterflies, which can both sequester and biosynthesize cyanogenic compounds. Here, we demonstrate that both Heliconius cydno chioneus and H. melpomene rosina have remarkable plasticity in their chemical defences. When feeding on Passiflora species with cyanogenic compounds that they can readily sequester, both species downregulate the biosynthesis of these compounds. By contrast, when fed on Passiflora plants that do not contain cyanogenic glucosides that can be sequestered, both species increase biosynthesis. This biochemical plasticity comes at a fitness cost for the more specialist H. m. rosina, as adult size and weight for this species negatively correlate with biosynthesis levels, but not for the more generalist H. c. chioneus. By contrast, H. m rosina has increased performance when sequestration is possible on its specialized host plant. In summary, phenotypic plasticity in biochemical responses to different host plants offers these butterflies the ability to widen their range of potential hosts within the Passiflora genus, while maintaining their chemical defences.  相似文献   
19.
Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.  相似文献   
20.
Adherence to medication among individuals with chronic obstructive pulmonary disease (COPD) is suboptimal and has negative impacts on survival and health care costs. No systematic review has examined the effectiveness of interventions designed to improve medication adherence. Electronic databases Medline and Cochrane were searched using a combination of MeSH and keywords. Eligible studies were interventions with a primary or secondary aim to improve medication adherence among individuals with COPD published in English. Included studies were assessed for methodological quality using the Effective Practice and Organisation of Care (EPOC) criteria. Of the 1,186 papers identified, seven studies met inclusion criteria. Methodological quality of the studies was variable. Five studies identified effective interventions. Strategies included: brief counselling; monitoring and feedback about inhaler use through electronic medication delivery devices; and multi-component interventions consisting of self-management and care co-ordination delivered by pharmacists and primary care teams. Further research is needed to establish the most effective and cost effective interventions. Special attention should be given to increasing patient sample size and using a common measure of adherence to overcome methodological limitations. Interventions that involve caregivers and target the healthcare provider as well as the patient should be further explored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号