首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382329篇
  免费   19730篇
  国内免费   900篇
  2021年   2832篇
  2020年   2123篇
  2019年   2496篇
  2018年   16609篇
  2017年   15362篇
  2016年   13143篇
  2015年   6179篇
  2014年   7063篇
  2013年   9502篇
  2012年   15499篇
  2011年   25144篇
  2010年   20612篇
  2009年   16091篇
  2008年   20518篇
  2007年   22853篇
  2006年   9524篇
  2005年   10050篇
  2004年   10391篇
  2003年   10016篇
  2002年   9357篇
  2001年   10935篇
  2000年   10507篇
  1999年   8157篇
  1998年   2674篇
  1997年   2495篇
  1996年   2407篇
  1995年   2107篇
  1992年   6356篇
  1991年   6525篇
  1990年   6390篇
  1989年   6368篇
  1988年   5957篇
  1987年   5524篇
  1986年   5056篇
  1985年   5276篇
  1984年   4273篇
  1983年   3477篇
  1982年   2373篇
  1979年   3777篇
  1978年   2942篇
  1977年   2671篇
  1976年   2582篇
  1975年   3137篇
  1974年   3430篇
  1973年   3384篇
  1972年   3640篇
  1971年   3427篇
  1970年   2371篇
  1969年   2326篇
  1968年   2186篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
72.
To define catalytically essential residues of bacteriophage T7 RNA polymerase, we have generated five mutants of the polymerase, D537N, K631M, Y639F, H811Q and D812N, by site-directed mutagenesis and purified them to homogeneity. The choice of specific amino acids for mutagenesis was based upon photoaffinity-labeling studies with 8-azido-ATP and homology comparisons with the Klenow fragment and other DNA/RNA polymerases. Secondary structural analysis by circular dichroism indicates that the protein folding is intact in these mutants. The mutants D537N and D812N are totally inactive. The mutant K631M has 1% activity, confined to short oligonucleotide synthesis. The mutant H811Q has 25% activity for synthesis of both short and long oligonucleotides. The mutant Y639F retains full enzymatic activity although individual kinetic parameters are somewhat different. Kinetic parameters, (kcat)app and (Km)app for the nucleotides, reveal that the mutation of Lys to Met has a much more drastic effect on (kcat)app than on (Km)app, indicating the involvement of K631 primarily in phosphodiester bond formation. The mutation of His to Gln has effects on both (kcat)app and (Km)app; namely, three- to fivefold reduction in (kcat)app and two- to threefold increase in (Km)app, implying that His811 may be involved in both nucleotide binding and phosphodiester bond formation. The ability of the mutant T7 RNA polymerases to bind template has not been greatly impaired. We have shown that amino acids D537 and D812 are essential, that amino acids K631 and H811 play significant roles in catalysis, and that the active site of T7 RNA polymerase is composed of different regions of the polypeptide chain. Possible roles for these catalytically significant residues in the polymerase mechanism are discussed.  相似文献   
73.
Indirect evidence has suggested that the Msh2-Msh6 mispair-binding complex undergoes conformational changes upon binding of ATP and mispairs, resulting in the formation of Msh2-Msh6 sliding clamps and licensing the formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes. Here, we have studied eight mutant Msh2-Msh6 complexes with defective responses to nucleotide binding and/or mispair binding and used them to study the conformational changes required for sliding clamp formation and ternary complex assembly. ATP binding to the Msh6 nucleotide-binding site results in a conformational change that allows binding of ATP to the Msh2 nucleotide-binding site, although ATP binding to the two nucleotide-binding sites appears to be uncoupled in some mutant complexes. The formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes requires ATP binding to only the Msh6 nucleotide-binding site, whereas the formation of Msh2-Msh6 sliding clamps requires ATP binding to both the Msh2 and Msh6 nucleotide-binding sites. In addition, the properties of the different mutant complexes suggest that distinct conformational states mediated by communication between the Msh2 and Msh6 nucleotide-binding sites are required for the formation of ternary complexes and sliding clamps.  相似文献   
74.
75.
76.
77.
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号