首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73105篇
  免费   6861篇
  国内免费   47篇
  2022年   519篇
  2021年   1003篇
  2020年   617篇
  2019年   776篇
  2018年   950篇
  2017年   900篇
  2016年   1410篇
  2015年   2373篇
  2014年   2601篇
  2013年   3501篇
  2012年   4269篇
  2011年   4357篇
  2010年   2953篇
  2009年   2559篇
  2008年   3532篇
  2007年   3671篇
  2006年   3549篇
  2005年   3442篇
  2004年   3439篇
  2003年   3247篇
  2002年   3098篇
  2001年   1227篇
  2000年   1125篇
  1999年   1250篇
  1998年   1057篇
  1997年   889篇
  1996年   810篇
  1995年   729篇
  1994年   661篇
  1993年   717篇
  1992年   1065篇
  1991年   899篇
  1990年   929篇
  1989年   912篇
  1988年   790篇
  1987年   754篇
  1986年   726篇
  1985年   750篇
  1984年   854篇
  1983年   684篇
  1982年   761篇
  1981年   762篇
  1980年   631篇
  1979年   646篇
  1978年   599篇
  1977年   575篇
  1976年   541篇
  1975年   454篇
  1974年   514篇
  1973年   480篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
92.
Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn’s disease (CD) patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn’s disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM), and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs) are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM) cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals.  相似文献   
93.
94.
We conducted an experiment in a northern mixed-grass prairie at Wind Cave National Park, South Dakota, USA to evaluate the effect of defoliation frequency on aboveground net primary production (ANPP), shoot nitrogen concentration, and aboveground N yield of graminoids. ANPP was significantly reduced at weekly and biweekly defoliation frequencies, but unaffected relative to unclipped controls at monthly and bimonthly frequencies. By contrast, clipping at all frequencies increased shoot N concentration above that of controls, and this increase was greatest at monthly or more frequent defoliations. Total aboveground N yield and potential N yield to grazers were greatest at intermediate (bimonthly to biweekly) frequencies. We suggest that grazers may maximize their nutritional status in this system by periodically regrazing areas at frequencies near the approximately monthly optimum that we observed.  相似文献   
95.
Amphipyrinae have long been a catchall taxon for Noctuidae, with most members lacking discernible morphological synapomorphies that would allow their assignment to one of the many readily diagnosable noctuid subfamilies. Here data from seven gene regions (> 5500 bp) for more than 120 noctuid genera are used to infer a phylogeny for Amphipyrinae and related subfamilies. Sequence data for 57 amphipyrine genera – most represented by the type species of the genus – are examined. We present here the first large‐scale molecular phylogenetic study of Amphipyrinae and the largest molecular phylogeny of Noctuidae to date; several proposed nomenclatural changes for well‐supported results; and the identification of areas of noctuid phylogeny where greater taxon sampling and/or genomic‐scale data are needed. Adult and larval morphology, along with life‐history traits, for taxonomic groupings most relevant to the results are discussed. Amphipyrinae are significantly redefined; many former amphipyrines, excluded as a result of these analyses, are reassigned to other noctuid subfamily‐level taxa. Four genera, Chamaeclea Grote, Heminocloa Barnes & Benjamin, Hemioslaria Barnes & Benjamin and Thurberiphaga Dyar, are transferred to the tribe Chamaecleini Keegan & Wagner tribe n. in Acontiinae. Stiriina is elevated to Stiriinae rev. stat. , Grotellina is elevated to Grotellinae rev. stat. and Annaphilina is elevated to Annaphilini rev. stat. Acopa Harvey is transferred to Bryophilinae, Aleptina Dyar is transferred to Condicinae, Leucocnemis Hampson and Oxycnemis gracillinea (Grote) are transferred to Oncocnemidinae, Nacopa Barnes & Benjamin is transferred to Noctuinae and Narthecophora Smith is transferred to Stiriinae. Azenia Grote (and its subtribe Azeniina), Cropia Walker, Metaponpneumata Möschler, Sexserrata Barnes & Benjamin and Tristyla Smith are transferred to Noctuidae incertae sedis. Hemigrotella Barnes & McDunnough (formerly in subtribe Grotellina) is retained in Amphipyrinae. Argentostiria Poole and Bistica Dyar are retained in Stiriini but removed from incertae sedis position. This published work has been registered on ZooBank: http://zoobank.org/urn:lsid:zoobank.org:pub:4A140782‐31BA‐445A‐B7BA‐6EAB98ED43FA .  相似文献   
96.
The mapping of genetic loci within organisms has been accelerated by the advent of Radiation Hybrid (RH) panels. These panels are available for humans and non-humans including mice, baboon, rat, and canine. This article contains a general protocol for the use of the Genebridge 4 whole genome RH panel to map a human locus. This protocol may also be adjusted to suit the other RH panels currently available.  相似文献   
97.
  1. Plant–animal interactions are diverse and widespread shaping ecology, evolution, and biodiversity of most ecological communities. Carnivorous plants are unusual in that they can be simultaneously engaged with animals in multiple mutualistic and antagonistic interactions including reversed plant–animal interactions where they are the predator. Competition with animals is a potential antagonistic plant–animal interaction unique to carnivorous plants when they and animal predators consume the same prey.
  2. The goal of this field study was to test the hypothesis that under natural conditions, sundews and spiders are predators consuming the same prey thus creating an environment where interkingdom competition can occur.
  3. Over 12 months, we collected data on 15 dates in the only protected Highland Rim Wet Meadow Ecosystem in Kentucky where sundews, sheet‐web spiders, and ground‐running spiders co‐exist. One each sampling day, we attempted to locate fifteen sites with: (a) both sheet‐web spiders and sundews; (b) sundews only; and (c) where neither occurred. Sticky traps were set at each of these sites to determine prey (springtails) activity–density. Ground‐running spiders were collected on sampling days. DNA extraction was performed on all spiders to determine which individuals had eaten springtails and comparing this to the density of sundews where the spiders were captured.
  4. Sundews and spiders consumed springtails. Springtail activity–densities were lower, the higher the density of sundews. Both sheet‐web and ground‐running spiders were found less often where sundew densities were high. Sheet‐web size was smaller where sundew densities were high.
  5. The results of this study suggest that asymmetrical exploitative competition occurs between sundews and spiders. Sundews appear to have a greater negative impact on spiders, where spiders probably have little impact on sundews. In this example of interkingdom competition where the asymmetry should be most extreme, amensalism where one competitor experiences no cost of interaction may be occurring.
  相似文献   
98.
99.
The computer program HYLAS generates from a standard DNA lettersequence a three-dimensional space curve (H curve) which embodiesthe entire information content of the original nucleotide sequence.The program can display H curves either as two-dimensional (frontand side view) projections or as stereo-pair images. The curvescan be marked at specific nucleotide locations, annotated, rotatedfor observation from any viewing angle, and manipulated forconvenient side-by-side comparisons. Unlike the cumbersome lettersequences, H curves can be drastically condensed in size withoutlosing their ability to reflect the global nucleotide-distributionpattern of the entire DNA sequence. Often, biologically importantloci can be visually identified on the H curves. HYLAS is writtenin FORTRAN with separate mainframe (IBM- VM/CMS) and microcomputer(MS-DOS) versions. It uses the Tektronix-TCS library of graphicsubroutines. Received on October 24, 1988; accepted on July 15, 1989  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号