首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51271篇
  免费   4701篇
  国内免费   30篇
  2022年   371篇
  2021年   773篇
  2020年   459篇
  2019年   578篇
  2018年   712篇
  2017年   662篇
  2016年   1057篇
  2015年   1786篇
  2014年   1961篇
  2013年   2590篇
  2012年   3271篇
  2011年   3336篇
  2010年   2152篇
  2009年   1937篇
  2008年   2736篇
  2007年   2850篇
  2006年   2777篇
  2005年   2666篇
  2004年   2568篇
  2003年   2447篇
  2002年   2341篇
  2001年   587篇
  2000年   508篇
  1999年   642篇
  1998年   749篇
  1997年   559篇
  1996年   476篇
  1995年   436篇
  1994年   421篇
  1993年   451篇
  1992年   499篇
  1991年   437篇
  1990年   422篇
  1989年   408篇
  1988年   384篇
  1987年   358篇
  1986年   385篇
  1985年   403篇
  1984年   476篇
  1983年   411篇
  1982年   497篇
  1981年   513篇
  1980年   411篇
  1979年   349篇
  1978年   363篇
  1977年   317篇
  1976年   347篇
  1975年   234篇
  1974年   295篇
  1973年   286篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
We recently showed that bitter melon-derived triterpenoids (BMTs) activate AMPK and increase GLUT4 translocation to the plasma membrane in vitro, and improve glucose disposal in insulin resistant models in vivo. Here we interrogated the mechanism by which these novel compounds activate AMPK, a leading anti-diabetic drug target. BMTs did not activate AMPK directly in an allosteric manner as AMP or the Abbott compound (A-769662) does, nor did they activate AMPK by inhibiting cellular respiration like many commonly used anti-diabetic medications. BMTs increased AMPK activity in both L6 myotubes and LKB1-deficient HeLa cells by 20–35%. Incubation with the CaMKKβ inhibitor, STO-609, completely attenuated this effect suggesting a key role for CaMKKβ in this activation. Incubation of L6 myotubes with the calcium chelator EGTA-AM did not alter this activation suggesting that the BMT-dependent activation was Ca2+-independent. We therefore propose that CaMKKβ is a key upstream kinase for BMT-induced activation of AMPK.  相似文献   
132.
Abstract — Lefkovitch's formula for the probability of incompatibility between two binary characters can give incorrect results because it redundantly counts some possible compatibilities. The inaccuracy occurs when the characters have the same number of terminals showing the apomorphic state.  相似文献   
133.
134.
rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins.  相似文献   
135.
136.
Summary Microorganisms were able to remove hydrocarbons (pentane and isobutane) from air by biological action in a columnar bioreactor with ceramic packing. The reactor was operated in a liquid continuous mode with gas recirculation and a slow addition of the organic-containing air. After a period of acclimation, the reactor has operated for 12 months with only pentane and isobutane as carbon sources. The gaseous hydrocarbons have been degraded throughout this period. The hydrocarbon removal rates measured between 1 and 2 g h–1 m–3. The microbes were shown to be able to degrade these gaseous hydrocarbons completely in a closed bioreactor without any additional nutrients.Research supported by the Advanced Industrial Concepts Division-Biological and Chemical Technologies Research. U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems. Inc.  相似文献   
137.
138.
Cholera toxin (CT) stimulated phospholipase activity and caused [3H]arachidonic acid (3H-AA) release in a murine macrophage/monocyte cell line. Pretreatment of cells with dexamethasone, a phospholipase A2 (PLA2) inhibitor, did not affect CT-induced 3H-AA release. In contrast, aspirin, which is an inhibitor of phospholipase C (PLC), blocked CT-induced 3H-AA release and subsequent prostaglandin (PC) synthesis. The inhibitory effect of aspirin was dose dependent, with 4 mM reducing the CT response by approximately 50%. Similarly, inhibition was time dependent, occurring when the drug was added to the culture medium as late as 30 min after CT. Brief exposure (30 min) of the cells to aspirin did not alter their subsequent response to CT, but 3H-AA release from cells exposed to aspirin for 2.5 h was irreversibly inhibited. The data suggested that CT stimulation of AA metabolism may involve increased PLC activity.  相似文献   
139.
Clustered regularly interspaced short palindromic repeats (CRISPR), in combination with CRISPR associated (cas) genes, constitute CRISPR-Cas bacterial adaptive immune systems. To generate immunity, these systems acquire short sequences of nucleic acids from foreign invaders and incorporate these into their CRISPR arrays as spacers. This adaptation process is the least characterized step in CRISPR-Cas immunity. Here, we used Pectobacterium atrosepticum to investigate adaptation in Type I-F CRISPR-Cas systems. Pre-existing spacers that matched plasmids stimulated hyperactive primed acquisition and resulted in the incorporation of up to nine new spacers across all three native CRISPR arrays. Endogenous expression of the cas genes was sufficient, yet required, for priming. The new spacers inhibited conjugation and transformation, and interference was enhanced with increasing numbers of new spacers. We analyzed ∼350 new spacers acquired in priming events and identified a 5′-protospacer-GG-3′ protospacer adjacent motif. In contrast to priming in Type I-E systems, new spacers matched either plasmid strand and a biased distribution, including clustering near the primed protospacer, suggested a bi-directional translocation model for the Cas1:Cas2–3 adaptation machinery. Taken together these results indicate priming adaptation occurs in different CRISPR-Cas systems, that it can be highly active in wild-type strains and that the underlying mechanisms vary.  相似文献   
140.
Integration of an external gene into a fission yeast chromosome is useful to investigate the effect of the gene product. An easy way to knock-in a gene construct is use of an integration plasmid, which can be targeted and inserted to a chromosome through homologous recombination. Despite the advantage of integration, construction of integration plasmids is energy- and time-consuming, because there is no systematic library of integration plasmids with various promoters, fluorescent protein tags, terminators and selection markers; therefore, researchers are often forced to make appropriate ones through multiple rounds of cloning procedures. Here, we establish materials and methods to easily construct integration plasmids. We introduce a convenient cloning system based on Golden Gate DNA shuffling, which enables the connection of multiple DNA fragments at once: any kind of promoters and terminators, the gene of interest, in combination with any fluorescent protein tag genes and any selection markers. Each of those DNA fragments, called a ‘module’, can be tandemly ligated in the order we desire in a single reaction, which yields a circular plasmid in a one-step manner. The resulting plasmids can be integrated through standard methods for transformation. Thus, these materials and methods help easy construction of knock-in strains, and this will further increase the value of fission yeast as a model organism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号