首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   29篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   14篇
  2019年   24篇
  2018年   11篇
  2017年   5篇
  2016年   11篇
  2015年   17篇
  2014年   19篇
  2013年   14篇
  2012年   23篇
  2011年   16篇
  2010年   18篇
  2009年   17篇
  2008年   11篇
  2007年   12篇
  2006年   12篇
  2005年   12篇
  2004年   16篇
  2003年   16篇
  2002年   13篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有342条查询结果,搜索用时 15 毫秒
31.
Hypoxia facilitates tumor invasion and metastasis by promoting neovascularization and co-option of tumor cells in the peritumoral vasculature, leading to dissemination of tumor cells into the circulation. However, until recently, animal models and imaging technology did not enable monitoring of the early events of tumor cell invasion and dissemination in living animals. We recently developed a zebrafish metastasis model to dissect the detailed events of hypoxia-induced tumor cell invasion and metastasis in association with angiogenesis at the single-cell level. In this model, fluorescent DiI-labeled human or mouse tumor cells are implanted into the perivitelline cavity of 48-h-old zebrafish embryos, which are subsequently placed in hypoxic water for 3 d. Tumor cell invasion, metastasis and pathological angiogenesis are detected under fluorescent microscopy in the living fish. The average experimental time for this model is 7 d. Our protocol offers a remarkable opportunity to study molecular mechanisms of hypoxia-induced cancer metastasis.  相似文献   
32.
The DEAD box proteins encoded by the genes ddx5 (p68) and ddx17 (isoforms p72 and p82) are more closely related to each other than to any other member of their family. We found that p68 negatively controls p72/p82 gene expression but not vice versa. Knocking down of either gene does not affect cell proliferation, in case of p68 suppression, however, only on condition that p72/p82 overexpression was granted. In contrast, co-silencing of both genes causes perturbation of nucleolar structure and cell death. In mutant studies, the apparently redundant role(s) of p68 and p72/p82 correspond to their ability to catalyze RNA rearrangement rather than RNA unwinding reactions. In search for possible physiological targets of this RNA rearrangement activity it is shown that the nucleolytic cleavage of 32S pre-rRNA is reduced after p68 subfamily knock-down, most probably due to a failure in the structural rearrangement process within the pre-60S ribosomal subunit preceding the processing of 32S pre-rRNA.  相似文献   
33.
The tiger‐fly Coenosia attenuata is a globally widespread predatory fly which is not only associated with greenhouse crops, but also occurs in open fields. It is a potential control agent against some of the more common pests in these crops. Assessing the genetic structure and gene flow patterns may be important for planning crop protection strategies and for understanding the historical processes that led to the present distribution of genetic lineages within this species. In the present study, the phylogeographical patterns of this species, based on mitochondrial cytochrome oxidase I and nuclear white and elongation factor‐1α genes, are described, revealing relatively low genetic diversity and weak genetic structure associated with a recent and sudden population expansion of the species. The geographical distribution of mitochondrial haplotypes indicates the Mediterranean as the most likely region of origin of the species. Some dispersal patterns of the species are also revaled, including at least three independent colonizations of North and South America: one from Middle East to North America with a strong bottleneck event, another from Europe to South America (Chile), with both likely to be a result of unintentional introduction, and a third one of still undetermined origin to South America (Ecuador). © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 308–326.  相似文献   
34.
To exploit the maximum potential of cellulose whiskers (CWs), we report here for the first time the successful fabrication of nanocomposites reinforced with highly oriented CWs in a polymer matrix. The nanocomposites were prepared using polyvinyl alcohol (PVA) and a colloidal suspension of cotton-derived CWs. The macroscopically homogeneous PVA-CW suspensions were extruded into cold methanol to form gel fibers followed by a hot drawing. Compared to the neat PVA fiber, the as-spun fiber containing a small amount of CWs (5 wt % of solid PVA) showed higher drawability, leading to an extremely high orientation of CWs with the matrix PVA. The stress-transfer mechanism, a prime determining factor for high mechanical properties of nanocomposites, was studied by X-ray diffraction. The stress on the incorporated CWs was monitored by applying an in situ nondestructive load to the composite fibers. The applied stress to the whole sample was found to be effectively transferred to the CWs inside the composites, suggesting strong interfacial bonding between the filler and the matrix. Effective stress transfer to the oriented whiskers resulted in outstanding enhancement in mechanical properties of the nanocomposites.  相似文献   
35.
36.
In a previous study, a marine isolate Clostridium sp. EDB2 degraded 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) under anaerobic conditions (Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004c) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821); however, the enzyme responsible for CL-20 degradation was not known. In the present study, we isolated and purified an enzyme, from strain EDB2, responsible for CL-20 degradation. The enzyme was membrane-associated and NADH-dependent and had a molecular weight of 56 kDa (with SDS-PAGE). N-terminal amino acid sequence of enzyme revealed that it belonged to dehydrogenase class of enzymes. The purified enzyme degraded CL-20 at a rate of 18.5 nmol/h mg protein under anaerobic conditions. Carbon and nitrogen mass balance of the products were 100 and 64%, respectively. In LC–MS–MS studies, we detected three different initial metabolites from CL-20, i.e., mono-nitroso derivative, denitrohydrogenated product, and double-denitrated isomers with molecular weight of 422, 393, and 346 Da, corresponding to presumed empirical formulas of C6H6N12O11, C6H7N11O10, and C6H6N10O8, respectively. Identity of all the three metabolites were confirmed by using ring-labeled [15N]CL-20 and the nitro-group-labeled [15NO2]CL-20. Taken together, the above data suggested that the enzyme degraded CL-20 via three different routes: Route A, via two single electron transfers necessary to release two nitro-groups from CL-20 to produce two double-denitrated isomers; Route B, via a hydride transfer necessary to produce a denitrohydrogenated product; and Route C, via transfer of two redox equivalents to CL-20 necessary to produce a mono-nitroso derivative of CL-20. This is the first biochemical study which showed that CL-20 degradation can be initiated via more than one pathway.  相似文献   
37.
A dehydrogenase from Clostridium sp. EDB2 and a diaphorase from Clostridium kluyveri were reacted with CL-20 to gain insights into the enzyme-catalyzed hydride transfer to CL-20, and the enzyme's stereo-specificity for either pro-R or pro-S hydrogens of NAD(P)H. Both enzymes biotransformed CL-20 at rates of 18.5 and 24nmol/h/mg protein, using NADH and NADPH as hydride-source, respectively, to produce a N-denitrohydrogenated product with a molecular weight of 393Da. In enzyme kinetics studies using reduced deuterated pyridine nucleotides, we found a kinetic deuterium isotopic effect of 2-fold on CL-20 biotransformation rate using dehydrogenase enzyme against (R)NADD as a hydride-source compared to either (S)NADD or NADH. Whereas, in case of diaphorase, the kinetic deuterium isotopic effect of about 1.5-fold was observed on CL-20 biotransformation rate using (R)NADPD as hydride-source. In a comparative study with LC-MS, using deuterated and non-deuterated NAD(P)H, we found a positive mass-shift of 1Da in the N-denitrohydrogenated product suggesting the involvement of a deuteride (D(-)) transfer from NAD(P)D. The present study thus revealed that both dehydrogenase and diaphorase enzymes from the two Clostridium species catalyzed a hydride transfer to CL-20 and showed stereo-specificity for pro-R hydrogen of NAD(P)H.  相似文献   
38.
Monocyte infiltration into inflammatory sites is generally preceded by neutrophils. We show here that neutrophils may support this process by activation of CCL15, a human chemokine circulating in blood plasma. Neutrophils were found to release CCL15 proteolytic activity in the course of hemofiltration of blood from renal insufficiency patients. Processing of CCL15 immunoreactivity (IR) in the pericellular space is suggested by a lack of proteolytic activity in blood and blood filtrate, but a shift of the retention time (t(R)) of CCL15-IR, detected by chromatographic separation of CCL15-IR in blood and hemofiltrate. CCL15 molecules with N-terminal deletions of 23 (delta23) and 26 (delta26) aa were identified as main proteolytic products in hemofiltrate. Neutrophil cathepsin G was identified as the principal protease to produce delta23 and delta26 CCL15. Also, elastase displays CCL15 proteolytic activity and produces a delta21 isoform. Compared with full-length CCL15, delta23 and delta26 isoforms displayed a significantly increased potency to induce calcium fluxes and chemotactic activity on monocytes and to induce adhesiveness of mononuclear cells to fibronectin. Thus, our findings indicate that activation of monocytes by neutrophils is at least in part induced by quantum proteolytic processing of circulating or endothelium-bound CCL15 by neutrophil cathepsin G.  相似文献   
39.
40.
The human gene ddx42 encodes a human DEAD box protein highly homologous to the p68 subfamily of RNA helicases. In HeLa cells, two ddx42 poly(A)+ RNA species were detected both encoding the nuclear localized 938 amino acid Ddx42p polypeptide. Ddx42p has been heterologously expressed and its biochemical properties characterized. It is an RNA binding protein, and ATP and ADP modulate its RNA binding affinity. Ddx42p is an NTPase with a preference for ATP, the hydrolysis of which is enhanced by various RNA substrates. It acts as a non-processive RNA helicase. Interestingly, RNA unwinding by Ddx42p is promoted in the presence of a single-strand (ss) binding protein (T4gp32). Ddx42p, particularly in the ADP-bound form (the state after ATP hydrolysis), also mediates efficient annealing of complementary RNA strands thereby displacing the ss binding protein. Ddx42p therefore represents the first example of a human DEAD box protein possessing RNA helicase, protein displacement and RNA annealing activities. The adenosine nucleotide cofactor bound to Ddx42p apparently acts as a switch that controls the two opposing activities: ATP triggers RNA strand separation, whereas ADP triggers annealing of complementary RNA strands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号