首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   52篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   20篇
  2013年   18篇
  2012年   26篇
  2011年   32篇
  2010年   19篇
  2009年   9篇
  2008年   19篇
  2007年   29篇
  2006年   26篇
  2005年   20篇
  2004年   28篇
  2003年   23篇
  2002年   26篇
  2001年   21篇
  2000年   26篇
  1999年   25篇
  1998年   18篇
  1997年   14篇
  1996年   5篇
  1995年   7篇
  1994年   11篇
  1993年   3篇
  1992年   3篇
  1991年   7篇
  1990年   6篇
  1989年   10篇
  1988年   3篇
  1987年   6篇
  1986年   9篇
  1985年   3篇
  1984年   4篇
  1983年   8篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1959年   1篇
排序方式: 共有542条查询结果,搜索用时 31 毫秒
101.
Compartmented monoxenic cultures of Ri T-DNA transformed carrot roots and a symbiotic arbuscular mycorrhizal fungus demonstrated for the first time that phosphate in an organic form (32P-labelled AMP) may be hydrolysed by extra-radical mycorrhizal hyphae in the absence of other organisms, and subsequently utilized as a mineral nutrient source by the host plant after fungal transport.  相似文献   
102.
Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS‐CoV‐2 infection is critical for developing treatments for severe COVID‐19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID‐19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL‐6. Using an in vitro stem cell‐based human pDC model, we further demonstrate that pDCs, while not supporting SARS‐CoV‐2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL‐6, IL‐8, CXCL10) cytokines that protect epithelial cells from de novo SARS‐CoV‐2 infection. Via targeted deletion of virus‐recognition innate immune pathways, we identify TLR7‐MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll‐like receptor (TLR)2 is responsible for the inflammatory IL‐6 response. We further show that SARS‐CoV‐2 engages the receptor neuropilin‐1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL‐6 response, suggesting neuropilin‐1 as potential therapeutic target for stimulation of TLR7‐mediated antiviral protection.  相似文献   
103.
Two highly enriched cultures containing Dehalococcoides spp. were used to study the effect of aceticlastic methanogens on reductive vinyl chloride (VC) dechlorination. In terms of aceticlastic methanogens, one culture was dominated by Methanosaeta, while the other culture was dominated by Methanosarcina, as determined by fluorescence in situ hybridization. Cultures amended with 2-bromoethanesulfonate (BES), an efficient inhibitor of methanogens, exhibited slow VC dechlorination when grown on acetate and VC. Methanogenic cultures dominated by Methanosaeta had no impact on dechlorination rates, compared to BES-amended controls. In contrast, methanogenic cultures dominated by Methanosarcina displayed up to sevenfold-higher rates of VC dechlorination than their BES-amended counterparts. Methanosarcina-dominated cultures converted a higher percentage of [2-(14)C]acetate to (14)CO(2) when concomitant VC dechlorination took place, compared to nondechlorinating controls. Respiratory indices increased from 0.12 in nondechlorinating cultures to 0.51 in actively dechlorinating cultures. During VC dechlorination, aqueous hydrogen (H(2)) concentrations dropped to 0.3 to 0.5 nM. However, upon complete VC consumption, H(2) levels increased by a factor of 10 to 100, indicating active hydrogen production from acetate oxidation. This process was thermodynamically favorable by means of the extremely low H(2) levels during dechlorination. VC degradation in nonmethanogenic cultures was not inhibited by BES but was limited by the availability of H(2) as electron donor, in cultures both with and without BES. These findings all indicate that Methanosarcina (but not Methanosaeta), while cleaving acetate to methane, simultaneously oxidizes acetate to CO(2) plus H(2), driving hydrogenotrophic dehalorespiration of VC to ethene by Dehalococcoides.  相似文献   
104.
105.
Summary In a glasshouse experiment with a boron deficient soil the application of nitrogen was found to decrease the boron concentration and boron uptake by lucerne (Medicago sativa). Without added boron, nitrogen applications killed the lucerne, probably by inducing severe boron deficiency. With added boron, the lowest rate of nitrogen application increased lucerne yield but further additions depressed yields. The effect was due to a physiological interaction rather than an effect of the nitrogen on the availability of the boron in the soil.  相似文献   
106.
107.
108.
The physiological effects of salmon lice infections on post-smolt of Atlantic salmon were examined by experimentally infecting hatchery reared post-smolts with infective copepodids. Even at high infection intensities, ranging from 30–250 lice per fish, early chalimus stages did not have severe, physiological effects on the fish. There was a sudden increase in fish mortality after the appearance of preadult I stages. Infected fish were then suffering due to lesions and osmoregulatory failure. Plasma chloride level increased significantly and total protein, albumin and haematocrit decreased significantly in infected compared to uninfected fish. All infected fish became moribund before adult lice appeared. Infection intensities above 30 salmon lice larvae per fish thus appear to cause death of Atlantic salmon post-smolt soon after the lice reach their pre-adult stage.  相似文献   
109.
Summary A novel flat-coil solid-state NMR probe capable of controlling the hydration of oriented phospholipid bilayers in the course of long-term experiments, is described. Perfect hydration control for at least five days of intense radio-frequency pulsing is demonstrated using 31P NMR of oriented dimyristoylphospha-tidylcholine bilayers. The probe design will be of particular importance for studies of peptides and proteins oriented in lipid bilayers.  相似文献   
110.
The highly conserved Group 1 late embryogenesis abundant (Lea) genes are present in the genome of most plants as a gene family. Family members are conserved along the entire coding region, especially within the extremely hydrophilic internal 20 amino acid motif, which may be repeated. Cloning of Lea Group 1 genes from barley resulted in the characterization of four family members named B19.1, B19.1b, B19.3 and B19.4 after the presence of this motif 1, 1, 3 and 4 times in each gene, respectively. We present here the results of comparative and evolutionary analyses of the barley Group 1 Lea gene family (B19). The most important findings resulting from this work are (1) the tandem clustering of B19.3 and B19.4, (2) the spatial conservation of putative regulatory elements between the four B19 gene promoters, (3) the determination of the relative age of the gene family members and (4) the chimeric nature of B19.3 and B19.4, reflecting a cross-over or gene-conversion event in their common ancestor. We also show evidence for the presence of one or two additional expressed B19 genes in the barley genome. Based on our results, we present a model for the evolution of the family in barley, including the 20 amino acid motif. Comparisons of the relatedness between the barley family and all other known Group 1 Lea genes using maximum parsimony (PAUP) analysis provide evidence for the time of divergence between the barley genes containing the internal motif as a single copy and as a repeat. The PAUP analyses also provide evidence for independent duplications of Group 1 genes containing the internal motif as a repeat in both monocots and dicots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号