首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12910篇
  免费   1114篇
  国内免费   6篇
  2023年   61篇
  2022年   130篇
  2021年   275篇
  2020年   147篇
  2019年   179篇
  2018年   266篇
  2017年   233篇
  2016年   401篇
  2015年   628篇
  2014年   799篇
  2013年   868篇
  2012年   1199篇
  2011年   1086篇
  2010年   711篇
  2009年   656篇
  2008年   832篇
  2007年   818篇
  2006年   764篇
  2005年   761篇
  2004年   677篇
  2003年   606篇
  2002年   580篇
  2001年   130篇
  2000年   87篇
  1999年   125篇
  1998年   129篇
  1997年   86篇
  1996年   88篇
  1995年   67篇
  1994年   57篇
  1993年   67篇
  1992年   60篇
  1991年   44篇
  1990年   40篇
  1989年   39篇
  1988年   30篇
  1987年   19篇
  1986年   25篇
  1985年   19篇
  1984年   23篇
  1983年   30篇
  1982年   16篇
  1981年   18篇
  1980年   17篇
  1979年   16篇
  1978年   12篇
  1977年   12篇
  1976年   12篇
  1973年   8篇
  1972年   7篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
31.
Using cultured human umbilical vein endothelial cells, in which phosphatidylcholine (PC) is equally pulse-labelled by various eicosanoid precursor fatty acids (EPFAs), we have studied the remodelling of EPFAs among the phospholipid classes and subclasses with and without activation, and the relationship of this remodelling process to the selective release of arachidonic acid (AA) by phospholipase A2-mediated cell stimulation. When endothelial cells are pulse-incubated with radiolabelled EPFA for 15 min, greater than 80% of cell-associated radioactivity is present in phospholipids, among which greater than 60% is found in 1,2-diacyl-sn-glycero-3-phosphocholine (diacyl PC). After removing unincorporated radioactivity, reincubation of the pulse-labelled cells for up to 6 h results in progressive decrease in EPFA-labelled diacyl PC, increase in AA- or eicosapentaenoic acid (EPA)-labelled 1-O-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine (plasmalogen PE) and increase only in AA-labelled 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl PC). This redistribution of radiolabelled phospholipids is not altered by the presence of excess non-radiolabelled EPFAs. When aspirin-treated EPFA-labelled endothelial cells are stimulated with ionophore A23187, a very selective release of AA is noted in comparison with eicosatrienoate (ETA) or EPA, accompanied by an equivalent decrease in AA-labelled diacyl PC and specific increase in AA-labelled plasmalogen PE and alkyl PC. These selective changes in AA radioactivity induced by A23187 are enhanced 2-fold by pretreating the AA-labelled cells with phorbol 12-myristate 13-acetate, which by itself induces no changes. The changes in radioactivity induced by A23187 without and with phorbol ester among the released AA, the diacyl PC and the plasmalogen PE are significantly correlated with each other. These results indicate that human endothelial cells incorporate EPFAs (AA, ETA, EPA) equally into diacyl PC but selectively release AA esterified into diacyl PC with specific remodelling into plasmalogen PE and alkyl PC.  相似文献   
32.
Summary The observation that tissue-type plasminogen activator (tPA) activity increased dramatically in preovulatory follicles has led to the hypothesis that plasminogen activation is causally related to follicle rupture. With immunohistochemistry, we have studied the appearance of tPA in ovaries of immature rats induced to ovulate and in adult cycling rats. Treatment of immature female rats with a single dose of pregnant mare serum gonadotropin (PMSG) induced follicular maturation. A subsequent human chorionic gonadotropin (hCG) injection resulted in follicle rupture 12–14 h later. PMSG treatment alone did not induce appearance of tPA-immunoreactive cells in any ovarian compartment. After hCG stimulation, however, theca cells, granulosa cells, and oocytes of pre- and postovulatory follicles displayed distinct tPA immunoreactivity. Fibroblastlike cells in the theca layers and tunica albuginea of the follicle apex also demonstrated localized cytoplasmic tPA reactivity. In addition to tPA synthesis in preovulatory follicles, hCG also induced tPA staining in the theca (but not granulosa) layers of non-ovulatory follicles. At 24 h after hCG treatment, there was a marked tPA staining in developing corpora lutea, ovulated ova, and oviductal epithelium. Ovaries from regularly cycling adult rats displayed a similar ovulation-related pattern of tPA immunostaining. The appearance of tPA in different cell types of the preovulatory follicle and in the fibroblast-like cells at the follicle apex, strengthens the hypothesis of a direct involvement of tPA in follicle rupture. Presence of tPA in postovulatory oocytes, cumulus cells, and surrounding oviductal epithelium may also indicate a role for tPA in the transfer of eggs in the oviduct.This work was supported by NIH Research Grants HD-14084; 12303  相似文献   
33.
Neomycin, an inositol-phospholipid-binding aminoglycoside antibiotic, is known to interfere with signal transduction mechanisms involving phospholipase C as effector enzyme. In this study, we report that neomycin can also markedly influence agonist binding of G-protein-coupled receptors. In membranes of differentiated human leukemia cells (HL 60 cells), neomycin (0.1-10 mM) was found to induce high-affinity binding of the chemotactic tripeptide, N-formyl-methionylleucylphenylalanine (fMet-Leu-Phe), to its receptor sites in a manner similar to magnesium. Gentamycin and streptomycin, two other aminoglycoside antibiotics, were as potent and as effective as neomycin or magnesium in inducing high-affinity agonist receptor binding. Pretreatment of the cells with pertussis toxin reduced the effects of magnesium and neomycin on agonist receptor binding likewise. In contrast, magnesium but not neomycin largely enhanced the potency of guanine nucleotides, particularly of GTP and its analog, guanosine-5'-O-(3-thiotriphosphate), to reduce fMet-Leu-Phe receptor binding, while maximal inhibition of agonist receptor binding by guanine nucleotides was identical with magnesium and neomycin. Furthermore, neomycin could not replace magnesium in providing stimulation of HL 60 membrane high-affinity GTPase by fMet-Leu-Phe. In close agreement to these findings on the pertussis-toxin-sensitive Gi-protein-coupled formyl peptide receptors, neomycin in a manner similar to magnesium induced high-affinity agonist binding of Gs-protein-coupled beta-adrenoceptors. Similar to formyl peptide receptor binding, high-affinity binding of isoproterenol to beta-adrenoceptors in guinea pig lung membranes induced by magnesium and neomycin was inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate), to a similar maximal extent but with an about 100-fold higher potency in the presence of magnesium than in the presence of neomycin. The data presented thus indicate that neomycin and other aminoglycoside antibiotics can mimic the action of magnesium (or other divalent cations) in inducing high-affinity agonist binding of Gi- and Gs-protein-coupled receptors, but not in inducing subsequent G-protein activation by guanosine triphosphates. The data, furthermore, suggest that neomycin by this selective action will be a powerful tool to dissect the multiple sites of magnesium's action in the agonist receptor-G-protein interaction.  相似文献   
34.
Receptor-regulated binding of the labeled GTP analog, guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP[S]), to guanine-nucleotide-binding proteins (G-proteins) was studied in porcine atrial membranes enriched in muscarinic acetylcholine (mACh) receptors. Binding of [35S]GTP[S] to the membranes was not or only slightly affected by the cholinergic agonist, carbachol, unless a second nucleotide was simultaneously present in the binding assay. This additional nucleotide requirement was best fulfilled by GDP, being maximally effective at 0.1-1 microM. In contrast, the GDP analog, guanosine 5'-O-(2-thiodiphosphate), could not replace GDP in promoting carbachol-induced increase in [35S]GTP[S] binding. In addition to GDP, agonist-induced stimulation of [35S]GTP[S] binding to porcine atrial membranes required the presence of Mg2+, being half-maximally and maximally effective at about 30 microM and 300 microM, respectively. Addition of NaCl, which decreased control binding measured in the presence of GDP alone, had no effect on the maximal extent of agonist-stimulated binding, but reduced the potency of carbachol in stimulating [35S]GTP[S] binding. Under optimal conditions, carbachol increased the binding of [35S]GTP[S] without apparent lag phase up to about 2.5-fold, with half-maximal and maximal increase being observed at 5-10 microM and 100 microM, respectively. The agonist-induced stimulation was competitively antagonized by the mACh receptor antagonist, atropine. The number of GTP[S] binding sites under receptor control was two--three-fold higher than the number of mACh receptors in the porcine atrial membranes used. Pretreatment of the membranes with pertussis toxin under conditions leading to 95% ADP-ribosylation of the toxin-sensitive G-protein alpha-subunits markedly reduced agonist-stimulated [35S]GTP[S] binding, with, however, about 30% stimulation still remaining. The data presented indicate that agonist-stimulated binding of [35S]GTP[S] to G-proteins can be a sensitive assay for measuring receptor-regulated G-protein activation in native membranes and, furthermore, suggest that one agonist-activated mACh receptor can activate two or three cardiac G-proteins, being mainly members of the pertussis-toxin-sensitive G-proteins.  相似文献   
35.
Summary The ultrastructural and transmitter development of lumbar sympathetic ganglia was studied in embryonic day-6 through-18 chick embryos. At embryonic day 6, ganglia are populated by two morphologically distinct types of neuronal cells and Schwann cell precursors. The neuronal populations basically comprise a granule-containing cell and a developing principal neuron. Granule-containing cells have, an irregularly shaped or oval nucleus with small clumps of chromatin attached to the inner nuclear membrane and numerous large (up to 300 nm) membrane-limited granules. Developing principal neurons display a more rounded vesicular nucleus with evenly distributed chromatin, prominent nucleoli, more developed areas of Golgi complexes, and rough endoplasmic reticulum and large dense-core vesicles up to 120 nm in diameter. There are granule-containing cells with fewer and smaller granules which still display the nucleus typical for granule-containing cells. These granule-containing cells may develop toward developing principal neurons or the resting state of granule-containing cells found in older ganglia. Both granule-containing cells and developing principal neurons proliferate and can undergo degeneration. At embryonic day 9 there are far more developing principal neurons than granule-containing cells. Most granule-containing cells have very few granules. Mitotic figures and signs of cell degeneration are still apparent. Synapse-like terminals are found on both developing principal neurons and granule-containing cells. Ganglionic development from embryonic day 11 through 18 comprises extensive maturation of developing principal neurons and a numerical decline of granule-containing cells. Some granule-containing cells with very few and small granules still persist at embryonic day 18. The mean catecholamine content per neuron increases from 0.044 femtomol at embryonic day 7 to 0.22 femtomol at embryonic day 15. Concomitantly, there is a more than 6-fold increase in tyrosine hydroxylase activity. Adrenaline has a 14% share in total catecholamines at embryonic day 15. Somatostatin levels are relatively high at embryonic day 7 (1.82 attomol per neuron) and are 10-fold reduced by embryonic day 15. Our results suggest the presence of two morphologically distinct sympathetic neuronal precursors at embryonic day 6: one with a binary choice to become a principal neuron or to die, the other one, a granule-containing cell, which alternatively may develop into a principal neuron, acquire a resting state or die.  相似文献   
36.
The effect of dopamine receptor stimulation on the accumulation of labelled inositol phosphates in rat striatal slices under basal and stimulated conditions was examined following preincubation with [3H]inositol. Incubation of striatal slices with the selective D-1 agonist SKF 38393 or the selective D-2 agonist LY 171555 for 5 or 30 min did not affect the basal accumulation of labelled inositol mono-, bis-, tris-, and tetrakisphosphate. Resolution by HPLC of inositol trisphosphate into inositol-1,3,4-tris-phosphate and inositol-1,4,5-trisphosphate isomers revealed that under basal conditions dopamine did not influence the accumulation of inositol-1,4,5-trisphosphate. Depolarisation evoked by KCl, or addition of the muscarinic receptor agonist carbachol, produced a marked increase in the accumulation of labelled inositol phosphates in both the presence and absence of lithium. Addition of dopamine did not reduce the ability of KCl or carbachol to increase inositol phospholipid hydrolysis. In the presence of lithium, dopamine (100 microM) enhanced KCl-stimulated inositol phospholipid hydrolysis, but this effect appears to be mediated by alpha 1 adrenoceptors because it was blocked by prazosin. SKF 38393 (10 microM) or LY 171555 (10 microM) also did not affect carbachol-stimulated inositol phospholipid hydrolysis. These data, in contrast to recent reports, suggest that striatal dopamine receptors do not appear to be linked to inositol phospholipid hydrolysis.  相似文献   
37.
Summary LiCl, a well-known vegetalising agent, interferes with the commitment of stem cells to nerve cells and nematocytes in Hydra attenuata. Treatment with 20 mM LiCl inhibits commitment to nerve cells, treatment with 1 mM LiCl inhibits commitment to nematocytes. However, LiCl does not prevent stem cells committed to the nematocyte pathway from dividing and differentiating into nests of nematocytes. Following LiCl treatment, determination to nerve cells and nematocytes is triggered again. Commitment to nerve cells is strongly stimulated within the first 3 h following pulse treatment with LiCl if the animals have been fed immediately prior to treatment. In Hydra exposed to LiCl for 10 days the stem cell density is reduced by at least 90% of the initial value, and nematocytes are almost completely missing, whereas the density of nerve cells is within the normal range in animals with normal morphology. Animals which developed a transverse constriction in the middle of the body axis contain a 1.7-fold higher nerve cell density in the lower part than is observed in control animals.  相似文献   
38.
The effect of NAD(P) and analogs of this nucleotide on nitrogenase activity in Rhodospirillum rubrum has been studied. Addition of NAD+ to nitrogen fixing Rsp. rubrum leads to inhibition of nitrogenase. NADP+ has the same effect but NADH or analogs modified in the nicotinamide portion do not cause inhibition. In contrast to ammonium ions, addition of NAD+ leads to inhibition of nitrogenase in cells that have been N-starved under argon. The inhibitory effect of NAD+ is more pronounced at lower light intensities. Addition of NAD+ also leads to inhibition of glutamine synthetase, a phenomenon also occurring when “switchoff” is produced by the addition of effectors such as ammonium ions or glutamine. It is also shown that NAD+ is taken up by Rsp. rubrum cells.  相似文献   
39.
We propose a nomenclature for the genes encoding the chlorophylla/b-binding proteins of the light-harvesting complexes of photosystem I and II. The genes encoding LHC I and LHC II polypeptides are namedLhca1 throughLhca4 andLhcb1 throughLhcb6, respectively. The proposal follows the general format recommended by the Commision on Plant Gene Nomenclature. We also present a table for the conversion of old gene names to the new nomenclature.  相似文献   
40.
Rhizome dynamics and resource storage in Phragmites australis   总被引:6,自引:1,他引:5  
Seasonal changes in rhizome concentrations of total nonstructural carbohydrates (TNC), water soluble carbohydrates (WSC), and mineral nutrients (N, P and K) were monitored in two Phragmites australis stands in southern Sweden. Rhizome biomass, rhizome length per unit ground area, and specific weight (weight/ length ratio) of the rhizomes were monitored in one of the stands.Rhizome biomass decreased during spring, increased during summer and decreased during winter. However, changes in spring and summer were small (< 500 g DW m-2) compared to the mean rhizome biomass (approximately 3000 g DW m–2). Winter losses were larger, approximately 1000 g DW m-2, and to a substantial extent involved structural biomass, indicating rhizome mortality. Seasonal changes in rhizome length per unit ground area revealed a rhizome mortality of about 30% during the winter period, and also indicated that an intensive period of formation of new rhizomes occurred in June.Rhizome concentrations of TNC and WSC decreased during the spring, when carbohydrates were translocated to support shoot growth. However, rhizome standing stock of TNC remained large (> 1000 g m–2). Concentrations and standing stocks of mineral nutrients decreased during spring/ early summer and increased during summer/ fall. Only N, however, showed a pattern consistent with a spring depletion caused by translocation to shoots. This pattern indicates sufficient root uptake of P and K to support spring growth, and supports other evidence that N is generally the limiting mineral nutrient for Phragmites.The biomass data, as well as increased rhizome specific weight and TNC concentrations, clearly suggests that reloading of rhizomes with energy reserves starts in June, not towards the end of the growing season as has been suggested previously. This resource allocation strategy of Phragmites has consequences for vegetation management.Our data indicate that carbohydrate reserves are much larger than needed to support spring growth. We propose that large stores are needed to ensure establishment of spring shoots when deep water or stochastic environmental events, such as high rhizome mortality in winter or loss of spring shoots due to late season frost, increase the demand for reserves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号