首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3989篇
  免费   366篇
  国内免费   4篇
  2023年   20篇
  2022年   58篇
  2021年   96篇
  2020年   44篇
  2019年   79篇
  2018年   92篇
  2017年   57篇
  2016年   136篇
  2015年   199篇
  2014年   241篇
  2013年   264篇
  2012年   332篇
  2011年   336篇
  2010年   184篇
  2009年   181篇
  2008年   241篇
  2007年   261篇
  2006年   221篇
  2005年   224篇
  2004年   184篇
  2003年   164篇
  2002年   169篇
  2001年   46篇
  2000年   36篇
  1999年   42篇
  1998年   35篇
  1997年   27篇
  1996年   21篇
  1995年   24篇
  1994年   16篇
  1993年   18篇
  1992年   23篇
  1991年   20篇
  1990年   17篇
  1989年   16篇
  1988年   10篇
  1987年   13篇
  1986年   10篇
  1985年   16篇
  1984年   10篇
  1983年   11篇
  1982年   18篇
  1981年   9篇
  1980年   8篇
  1979年   10篇
  1978年   10篇
  1977年   8篇
  1975年   12篇
  1974年   10篇
  1973年   9篇
排序方式: 共有4359条查询结果,搜索用时 31 毫秒
991.
Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.  相似文献   
992.
The human selenoprotein VIMP (VCP-interacting membrane protein)/SelS (selenoprotein S) localizes to the endoplasmic reticulum (ER) membrane and is involved in the process of ER-associated degradation (ERAD). To date, little is known about the presumed redox activity of VIMP, its structure and how these features might relate to the function of the protein in ERAD. Here, we use the recombinantly expressed cytosolic region of VIMP where the selenocysteine (Sec) in position 188 is replaced with a cysteine (a construct named cVIMP-Cys) to characterize redox and structural properties of the protein. We show that Cys-188 in cVIMP-Cys forms a disulfide bond with Cys-174, consistent with the presence of a Cys174-Sec188 selenosulfide bond in the native sequence. For the disulfide bond in cVIMP-Cys we determined the reduction potential to -200 mV, and showed it to be a good substrate of thioredoxin. Based on a biochemical and structural characterization of cVIMP-Cys using analytical gel filtration, CD and NMR spectroscopy in conjunction with bioinformatics, we propose a comprehensive overall structural model for the cytosolic region of VIMP. The data clearly indicate the N-terminal half to be comprised of two extended α-helices followed by a C-terminal region that is intrinsically disordered. Redox-dependent conformational changes in cVIMP-Cys were observed only in the vicinity of the two Cys residues. Overall, the redox properties observed for cVIMP-Cys are compatible with a function as a reductase, and we speculate that the plasticity of the intrinsically disordered C-terminal region allows the protein to access many different and structurally diverse substrates.  相似文献   
993.
Filamentous phage use the two N‐terminal domains of their gene‐3‐proteins to initiate infection of Escherichia coli. One domain interacts with a pilus, and then the other domain binds to TolA at the cell surface. In phage fd, these two domains are tightly associated with each other, which renders the phage robust but non‐infectious, because the TolA binding site is inaccessible. Activation for infection requires partial unfolding, domain disassembly and prolyl isomerization. Phage IKe infects E. coli less efficiently than phage fd. Unlike in phage fd, the pilus‐ and TolA‐binding domains of phage IKe are independent of each other in stability and folding. The site for TolA binding is thus always accessible, but the affinity is very low. The structures of the two domains, analysed by X‐ray crystallography and by NMR spectroscopy, revealed a unique fold for the N‐pilus‐binding domain and a conserved fold for the TolA‐binding domain. The absence of an activation mechanism as in phage fd and the low affinity for TolA probably explain the low infectivity of phage IKe. They also explain why, in a previous co‐evolution experiment with a mixture of phage fd and phage IKe, all hybrid phage adopted the superior infection mechanism of phage fd.  相似文献   
994.
A novel series of N-substituted tropane derivatives was characterized as potent muscarinic acetylcholine receptor antagonists (mAChRs). Kinetic washout studies showed that the N-endosubstituted analog 24 displayed much slower reversibility at mAChRs than the methyl-substituted parent molecule darotropium. In addition, it was shown that this characteristic appeared to translate into enhanced which duration of action in a mouse model of bronchonstriction.  相似文献   
995.
996.
Myocardial infarction is a manifestation of necrotic cell death as a result of opening of the mitochondrial permeability transition (MPT). Receptor-mediated cardioprotection is triggered by an intracellular signaling pathway that includes phosphatidylinositol 3-kinase, endothelial nitric-oxide synthase, guanylyl cyclase, protein kinase G (PKG), and the mitochondrial K(ATP) channel (mitoK(ATP)). In this study, we explored the pathway that links mitoK(ATP) with the MPT. We confirmed previous findings that diazoxide and activators of PKG or protein kinase C (PKC) inhibited MPT opening. We extended these results and showed that other K(+) channel openers as well as the K(+) ionophore valinomycin also inhibited MPT opening and that this inhibition required reactive oxygen species. By using isoform-specific peptides, we found that the effects of K(ATP) channel openers, PKG, or valinomycin were mediated by a PKCepsilon. Activation of PKCepsilon by phorbol 12-myristate 13-acetate or H(2)O(2) resulted in mitoK(ATP)-independent inhibition of MPT opening, whereas activation of PKCepsilon by PKG or the specific PKCepsilon agonist psiepsilon receptor for activated C kinase caused mitoK(ATP)-dependent inhibition of MPT opening. Exogenous H(2)O(2) inhibited MPT, because of its activation of PKCepsilon, with an IC(50) of 0.4 (+/-0.1) microm. On the basis of these results, we propose that two different PKCepsilon pools regulate this signaling pathway, one in association with mitoK(ATP) and the other in association with MPT.  相似文献   
997.
Integration host factor (IHF) is a bacterial histone-like protein whose primary biological role is to condense the bacterial nucleoid and to constrain DNA supercoils. It does so by binding in a sequence-independent manner throughout the genome. However, unlike other structurally related bacterial histone-like proteins, IHF has evolved a sequence-dependent, high affinity DNA-binding motif. The high affinity binding sites are important for the regulation of a wide range of cellular processes. A remarkable feature of IHF is that it employs an indirect readout mechanism to bind and wrap DNA at both the nonspecific and high affinity (sequence-dependent) DNA sites. In this study we assessed the contributions of pre-formed and protein-induced DNA conformations to the energetics of IHF binding. Binding energies determined experimentally were compared with energies predicted for the IHF-induced deformation of the DNA helix (DNA deformation energy) in the IHF-DNA complex. Combinatorial sets of de novo DNA sequences were designed to systematically evaluate the influence of sequence-dependent structural characteristics of the conserved IHF recognition elements of the consensus DNA sequence. We show that IHF recognizes pre-formed conformational characteristics of the consensus DNA sequence at high affinity sites, whereas at all other sites relative affinity is determined by the deformational energy required for nearest-neighbor base pairs to adopt the DNA structure of the bound DNA-IHF complex.  相似文献   
998.
A proteome study based on 2-D gel electrophoresis was performed in order to analyse the cold-stress response of Arabidopsis plants. The emphasis was to monitor the overall changes in the protein complement after prolonged exposure rather than short-term responses. Two different temperature regimes were used (6 degrees C and 10 degrees C) and plants were exposed to cold-stress exposure for 1 week. Protein patterns were also monitored after re-shifting plants to control conditions for a further week. To monitor gradual changes in the response to the two cold-stress conditions, the analysis was performed with DIGE technology with the inclusion of an internal standard. In the experiments using 6 degrees C, 22 spots with at least 2-fold altered expression were found; among them 18 were increased and four were decreased. When plants were exposed to 10 degrees C, 18 of these 22 spots still showed a 2-fold change; however, the alterations were, in general, more moderate than observed under 6 degrees C. Spot identification was performed by MALDI-TOF and ESI-MS/MS. Many of the proteins identified have previously been described in the context of cold-stress responses, indicating the validity of this proteome approach for further in-depth studies.  相似文献   
999.
1000.
The generation of advanced intercross lines (AIL) is a powerful approach for high-resolution fine mapping of quantitative trait loci (QTLs), because they accumulate much more recombination events compared with conventional F2 intercross and N2 backcross. However, the application of this approach is severely hampered by the requirements of excessive resources to maintain such crosses, i.e., in terms of animal care, space, and time. Therefore, in this study, we produced an AIL to fine map collagen-induced arthritis (CIA) QTLs using comparatively limited resources. We used only 308 (DBA/1 x FVB/N)F11/12 AIL mice to refine QTLs controlling the severity and onset of arthritis as well as the Ab response and T cell subset in CIA, namely Cia2, Cia27, and Trmq3. These QTLs were originally identified in (DBA/1 x FVB/N)F2 progeny. The confidence intervals of the three QTLs were refined from 40, 43, and 48 Mb to 12, 4.1, and 12 Mb, respectively. The data were complemented by the use of another QTL fine-mapping approach, haplotype analysis, to further refine Cia2 into a 2-Mb genomic region. To aid in the search for candidate genes for the QTLs, genome-wide expression profiling was performed to identify strain-specific differentially expressed genes within the confidence intervals. Of the 1396 strain-specific differentially expressed genes, 3, 3, and 12 genes were within the support intervals of the Cia2, Cia27, and Trmq3, respectively. In addition, this study revealed that Cia27 and Trmq3 controlling anti-CII IgG2a Ab and CD4:CD8 T cell ratio, respectively, also regulated CIA clinical phenotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号