首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1741篇
  免费   164篇
  国内免费   2篇
  1907篇
  2023年   13篇
  2022年   40篇
  2021年   38篇
  2020年   22篇
  2019年   42篇
  2018年   45篇
  2017年   29篇
  2016年   73篇
  2015年   86篇
  2014年   103篇
  2013年   94篇
  2012年   143篇
  2011年   141篇
  2010年   72篇
  2009年   71篇
  2008年   106篇
  2007年   114篇
  2006年   98篇
  2005年   91篇
  2004年   78篇
  2003年   64篇
  2002年   53篇
  2001年   24篇
  2000年   20篇
  1999年   20篇
  1998年   17篇
  1997年   12篇
  1996年   10篇
  1995年   7篇
  1994年   6篇
  1993年   8篇
  1992年   14篇
  1991年   11篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1986年   4篇
  1985年   9篇
  1984年   5篇
  1983年   9篇
  1982年   11篇
  1981年   9篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1971年   4篇
  1965年   3篇
排序方式: 共有1907条查询结果,搜索用时 0 毫秒
21.
The population status of harbor porpoises has been of concern for several years, and the establishment of Marine Protected Areas (MPAs) has been suggested as a method to protect the harbor porpoise (Phocoena phocoena, Linneaus 1758) and other small cetaceans. In order to designate MPAs, high‐density areas for the species must be identified. Spatial distribution of small cetaceans is usually assessed from ship or aerial surveys. As a potentially more accurate alternative, this study examined the movements and area preferences of 64 harbor porpoises, satellite tagged between 1997 and 2007, in order to determine the distribution in the North Sea, the western Baltic, and the waters in between. Results show that harbor porpoises are not evenly distributed, but congregate in nine high‐density areas within the study area. Several of these areas are subject to significant seasonal variation. The study found no differences in the home range size of males and females, but immature harbor porpoises have larger home ranges than mature porpoises. The use of satellite telemetry for identifying areas of high harbor porpoise density can be of key importance when designating MPAs.  相似文献   
22.
Organisms use molecular chaperones to combat the unfolding and aggregation of proteins. While protein chaperones have been widely studied, here we demonstrate that DNA and RNA exhibit potent chaperone activity in vitro. Nucleic acids suppress the aggregation of classic chaperone substrates up to 300-fold more effectively than the protein chaperone GroEL. Additionally, RNA cooperates with the DnaK chaperone system to refold purified luciferase. Our findings reveal a possible new role for nucleic acids within the cell: that nucleic acids directly participate in maintaining proteostasis by preventing protein aggregation.  相似文献   
23.
Jakob  CA; Burda  P; te Heesen  S; Aebi  M; Roth  J 《Glycobiology》1998,8(2):155-164
In higher eukaryotes a quality control system monitoring the folding state of glycoproteins is located in the ER and is composed of the proteins calnexin, calreticulin, glucosidase II, and UDP-glucose: glycoprotein glucosyltransferase. It is believed that the innermost glucose residue of the N- linked oligosaccharide of a glycoprotein serves as a tag in this control system and therefore performs an important function in the protein folding pathway. To address this function, we constructed Saccharomyces cerevisiae strains which contain nonglucosylated (G0), monoglucosylated (G1), or diglucosylated (G2) glycoproteins in the ER and used these strains to study the role of glucose residues in the ER processing of glycoproteins. These alterations of the oligosaccharide structure did not result in a growth phenotype, but the induction of the unfolded protein response upon treatment with DTT was much higher in G0 and G2 strains as compared to wild-type and G1 strains. Our results provide in vivo evidence that the G1 oligosaccharide is an active oligosaccharide structure in the ER glycoprotein processing pathway of S.cerevisiae. Furthermore, by analyzing N- linked oligosaccharides of the constructed strains we can directly show that no general glycoprotein glucosyltransferase exists in S. cerevisiae.   相似文献   
24.
25.
Accurate and sensitive online detection tools would benefit both fundamental research and practical applications in aquatic microbiology. Here, we describe the development and testing of an online flow cytometer (FCM), with a specific use foreseen in the field of drinking water microbiology. The system incorporated fully automated sampling and fluorescent labeling of bacterial nucleic acids with analysis at 5-min intervals for periods in excess of 24 h. The laboratory scale testing showed sensitive detection (< 5% error) of bacteria over a broad concentration range (1 × 10(3) -1 × 10(6) cells mL(-1) ) and particularly the ability to track both gradual changes and dramatic events in water samples. The system was tested with bacterial pure cultures as well as indigenous microbial communities from natural water samples. Moreover, we demonstrated the possibility of using either a single fluorescent dye (e.g., SYBR Green I) or a combination of two dyes (SYBR Green I and Propidium Iodide), thus broadening the application possibilities of the system. The online FCM approach described herein has considerable potential for routine and continuous monitoring of drinking water, optimization of specific drinking water processes such as biofiltration or disinfection, as well as aquatic microbiology research in general.  相似文献   
26.
D Neuser  P Bellemann 《FEBS letters》1986,200(2):347-351
Treatment of chicken liver fructose-1,6-bisphosphatase with oxidized glutathione (GSSG) leads to an increase in activity. This activation is markedly enhanced if treatment is performed in the presence of AMP or Mn2+. The effects of AMP and Mn2+ appear to be synergistic. The maximal activation is over 13-fold and is accompanied by the disappearance of 4 sulfhydryl groups per molecule of enzyme. Both fructose 1,6-bisphosphate and fructose 2,6-bisphosphate can largely prevent this activation. Activation can be reversed by dithiothreitol or cysteine. It appears that GSSG activates this enzyme by thiol/disulfide exchanges with the enzyme's specific sulfhydryl groups.  相似文献   
27.
Bacillus gibsonii Alkaline Protease (BgAP) is a recently reported subtilisin protease exhibiting activity and stability properties suitable for applications in laundry and dish washing detergents. However, BgAP suffers from a significant decrease of activity at low temperatures. In order to increase BgAP activity at 15°C, a directed evolution campaign based on the SeSaM random mutagenesis method was performed. An optimized microtiter plate expression system in B. subtilis was established and classical proteolytic detection methods were adapted for high throughput screening. In parallel, the libraries were screened for increased residual proteolytic activity after incubation at 58°C. Three iterative rounds of directed BgAP evolution yielded a set of BgAP variants with increased specific activity (Kcat) at 15°C and increased thermal resistance. Recombination of both sets of amino acid substitutions resulted finally in variant MF1 with a 1.5‐fold increased specific activity (15°C) and over 100 times prolonged half‐life at 60°C (224 min compared to 2 min of the WT BgAP). None of the introduced amino acid substitutions were close to the active site of BgAP. Activity‐altering amino acid substitutions were from non‐charged to non‐charged or from sterically demanding to less demanding. Thermal stability improvements were achieved by substitutions to negatively charged amino acids in loop areas of the BgAP surface which probably fostered ionic and hydrogen bonds interactions. Biotechnol. Bioeng. 2013; 110: 711–720. © 2012 Wiley Periodicals, Inc.  相似文献   
28.
29.
In vitro, protein disulfide isomerase (Pdi1p) introduces disulfides into proteins (oxidase activity) and provides quality control by catalyzing the rearrangement of incorrect disulfides (isomerase activity). Protein disulfide isomerase (PDI) is an essential protein in Saccharomyces cerevisiae, but the contributions of the catalytic activities of PDI to oxidative protein folding in the endoplasmic reticulum (ER) are unclear. Using variants of Pdi1p with impaired oxidase or isomerase activity, we show that isomerase-deficient mutants of PDI support wild-type growth even in a strain in which all of the PDI homologues of the yeast ER have been deleted. Although the oxidase activity of PDI is sufficient for wild-type growth, pulse-chase experiments monitoring the maturation of carboxypeptidase Y reveal that oxidative folding is greatly compromised in mutants that are defective in isomerase activity. Pdi1p and one or more of its ER homologues (Mpd1p, Mpd2p, Eug1p, Eps1p) are required for efficient carboxypeptidase Y maturation. Consistent with its function as a disulfide isomerase in vivo, the active sites of Pdi1p are partially reduced (32 +/- 8%) in vivo. These results suggest that PDI and its ER homologues contribute both oxidase and isomerase activities to the yeast ER. The isomerase activity of PDI can be compromised without affecting growth and viability, implying that yeast proteins that are essential under laboratory conditions may not require efficient disulfide isomerization.  相似文献   
30.
Until 2019, the human genome was available in only one fully annotated version, GRCh38, which was the result of 18 years of continuous improvement and revision. Despite dramatic improvements in sequencing technology, no other genome was available as an annotated reference until 2019, when the genome of an Ashkenazi individual, Ash1, was released. In this study, we describe the assembly and annotation of a second individual genome, from a Puerto Rican individual whose DNA was collected as part of the Human Pangenome project. The new genome, called PR1, is the first true reference genome created from an individual of African descent. Due to recent improvements in both sequencing and assembly technology, and particularly to the use of the recently completed CHM13 human genome as a guide to assembly, PR1 is more complete and more contiguous than either GRCh38 or Ash1. Annotation revealed 37,755 genes (of which 19,999 are protein coding), including 12 additional gene copies that are present in PR1 and missing from CHM13. Fifty-seven genes have fewer copies in PR1 than in CHM13, 9 map only partially, and 3 genes (all noncoding) from CHM13 are entirely missing from PR1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号