首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   52篇
  国内免费   2篇
  2024年   1篇
  2023年   7篇
  2022年   3篇
  2021年   37篇
  2020年   21篇
  2019年   19篇
  2018年   24篇
  2017年   10篇
  2016年   25篇
  2015年   33篇
  2014年   33篇
  2013年   34篇
  2012年   47篇
  2011年   44篇
  2010年   31篇
  2009年   29篇
  2008年   28篇
  2007年   29篇
  2006年   20篇
  2005年   18篇
  2004年   19篇
  2003年   11篇
  2002年   18篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1959年   1篇
  1938年   1篇
排序方式: 共有611条查询结果,搜索用时 15 毫秒
81.
Actin-based cell motility and force generation are central to immune response, tissue development, and cancer metastasis, and understanding actin cytoskeleton regulation is a major goal of cell biologists. Cell spreading is a commonly used model system for motility experiments – spreading fibroblasts exhibit stereotypic, spatially-isotropic edge dynamics during a reproducible sequence of functional phases: 1) During early spreading, cells form initial contacts with the surface. 2) The middle spreading phase exhibits rapidly increasing attachment area. 3) Late spreading is characterized by periodic contractions and stable adhesions formation. While differences in cytoskeletal regulation between phases are known, a global analysis of the spatial and temporal coordination of motility and force generation is missing. Implementing improved algorithms for analyzing edge dynamics over the entire cell periphery, we observed that a single domain of homogeneous cytoskeletal dynamics dominated each of the three phases of spreading. These domains exhibited a unique combination of biophysical and biochemical parameters – a motility module. Biophysical characterization of the motility modules revealed that the early phase was dominated by periodic, rapid membrane blebbing; the middle phase exhibited continuous protrusion with very low traction force generation; and the late phase was characterized by global periodic contractions and high force generation. Biochemically, each motility module exhibited a different distribution of the actin-related protein VASP, while inhibition of actin polymerization revealed different dependencies on barbed-end polymerization. In addition, our whole-cell analysis revealed that many cells exhibited heterogeneous combinations of motility modules in neighboring regions of the cell edge. Together, these observations support a model of motility in which regions of the cell edge exhibit one of a limited number of motility modules that, together, determine the overall motility function. Our data and algorithms are publicly available to encourage further exploration.  相似文献   
82.

Background

Metabolic profiling holds promise with regard to deepening our understanding of infection biology and disease states. The objectives of our study were to assess the global metabolic responses to an Echinostoma caproni infection in the mouse, and to compare the biomarkers extracted from different biofluids (plasma, stool, and urine) in terms of characterizing acute and chronic stages of this intestinal fluke infection.

Methodology/Principal Findings

Twelve female NMRI mice were infected with 30 E. caproni metacercariae each. Plasma, stool, and urine samples were collected at 7 time points up to day 33 post-infection. Samples were also obtained from non-infected control mice at the same time points and measured using 1H nuclear magnetic resonance (NMR) spectroscopy. Spectral data were subjected to multivariate statistical analyses. In plasma and urine, an altered metabolic profile was already evident 1 day post-infection, characterized by reduced levels of plasma choline, acetate, formate, and lactate, coupled with increased levels of plasma glucose, and relatively lower concentrations of urinary creatine. The main changes in the urine metabolic profile started at day 8 post-infection, characterized by increased relative concentrations of trimethylamine and phenylacetylglycine and lower levels of 2-ketoisocaproate and showed differentiation over the course of the infection.

Conclusion/Significance

The current investigation is part of a broader NMR-based metabonomics profiling strategy and confirms the utility of this approach for biomarker discovery. In the case of E. caproni, a diagnosis based on all three biofluids would deliver the most comprehensive fingerprint of an infection. For practical purposes, however, future diagnosis might aim at a single biofluid, in which case urine would be chosen for further investigation, based on quantity of biomarkers, ease of sampling, and the degree of differentiation from the non-infected control group.  相似文献   
83.
Two tachykinin-related peptides (TRPs) are known in decapods, APSGFLGMRamide and TPSGFLGMRamide. The former peptide appears to be ubiquitously conserved in members of this taxon, while the latter has been suggested to be a genus (Cancer)- or infraorder (Brachyura)-specific isoform. Here, we characterized a cDNA from the American lobster Homarus americanus (infraorder Astacidea) that encodes both TRPs: six copies of APSGFLGMRamide and one of TPSGFLGMRamide. Mass spectral analyses of the H. americanus supraoesophageal ganglion (brain) and commissural ganglia confirmed the presence of both peptides in these neural tissues; both isoforms were also detected in the midgut. Physiological experiments showed that both APSGFLGMRamide and TPSGFLGMRamide are cardioactive in H. americanus, eliciting identical increases in both heart contraction frequency and amplitude. Collectively, our data represent the first genetic confirmation of TRPs in H. americanus and of TPSGFLGMRamide in any species, demonstrate that TPSGFLGMRamide is not restricted to brachyurans, and show that both this peptide and APSGFLGMRamide are brain-gut isoforms, the first peptides thus far confirmed to possess this dual tissue distribution in H. americanus. Our data also suggest a possible role for TRPs in modulating the output of the lobster heart.  相似文献   
84.
Knowledge of the mechanical properties of double-stranded DNA (dsDNA) is essential to understand the role of dsDNA looping in gene regulation and the mechanochemistry of molecular machines that operate on dsDNA. Here, we use a newly developed tool, force sensors with optical readout, to measure the forces inside short, strained loops composed of both dsDNA and single-stranded DNA. By varying the length of the loops and their proportion of dsDNA, it was possible to vary their internal forces from 1 pN to >20 pN. Surprisingly, internal loop forces changed erratically as the amount of dsDNA was increased for a given loop length, with the effect most notable in the smallest loop (57 nucleotides). Monte Carlo simulations based on the helical wormlike chain model accurately predict internal forces when more than half of the loop is dsDNA but fail otherwise. Mismatches engineered into the double-stranded regions increased flexibility, suggesting that Watson-Crick basepaired dsDNA can withstand high compressive forces without recourse to multibase melts. Fluorescence correlation spectroscopy further excluded transient melting (microsecond to millisecond duration) as a mechanism for relief of compressive forces in the tested dsDNAs. DNA loops with integrated force sensors may allow the comprehensive mapping of the elasticity of short dsDNAs as a function of both sequence and salt.  相似文献   
85.
Canonically, 'mirror neurons' are cells in area F5 of the ventral premotor cortex that are active during both observation and execution of goal-directed movements. Recently, cells with similar properties have been observed in a number of other areas in the motor system, including the primary motor cortex. Mirror neurons are a part of a system whose function is thought to involve the prediction and interpretation of the sensory consequences of our own actions as well as the actions of others. Mirror-like responses are relevant to the development of brain-machine interfaces (BMIs) because they provide a robust way to map neural activity to behavior, and because they represent high-level information about goals and intentions that may have utility in future BMI applications.  相似文献   
86.
Boreal peatlands, which contain a large fraction of the world's soil organic carbon pool, may be significantly affected by changes in climate and land use, with attendant feedback to climate through changes in albedo, fluxes of energy or trace gases, and soil carbon storage. The response of peatlands to changing environmental conditions will probably be dictated in part by scale-dependent topographic heterogeneity, which is known to interact with hydrology, vegetation, nutrients, and emissions of trace gases. Because the bryophyte community can contribute the majority of aboveground production in bogs, we investigated how microscale topography affects the response of bryophyte species production and cover to warming (using overhead infrared lamps) and manipulations of water-table height within experimental mesocosms. We removed 27 intact peat monoliths (2.1-m2 surface area, 0.5-0.7 m depth) from a bog in northern Minnesota, USA, and subjected them to three warming and three water-table treatments in a fully crossed factorial design. Between 1994 and 1998, we determined annual production of the four dominant bryophyte taxa within three microtopographic zones (low, medium, and high relative to the water table). We also estimated species cover and calculated changes in topography and roughness of the bryophyte surface through time. Total production of all bryophytes, and production of the individual taxa Polytrichum strictum, Sphagnum magellanicum, and Sphagnum Section Acutifolia, were about 100% greater in low microtopographic zones than in high zones, and about 50% greater in low than in medium zones. Production of bryophytes increased along the gradient of increasing water-table heights, but in most years, total production of bryophytes was negatively correlated with height above the set water table only for the wettest water-table treatment. Although bryophyte production was unaffected by the warming treatments, the bryophyte surface flattened in proportion to the degree of warming. These results indicate that production of bryophytes is driven most strongly by the absolute and relative height of the bryophyte surface above the water table. Predicted changes in water-table height commensurate with changes in surface temperature may thus affect both production and superficial topography of bryophyte communities.  相似文献   
87.
88.
Recent years have seen an exponential increase in the amount of data available in all sciences and application domains. Macroecology is part of this “Big Data” trend, with a strong rise in the volume of data that we are using for our research. Here, we summarize the most recent developments in macroecology in the age of Big Data that were presented at the 2018 annual meeting of the Specialist Group Macroecology of the Ecological Society of Germany, Austria and Switzerland (GfÖ). Supported by computational advances, macroecology has been a rapidly developing field over recent years. Our meeting highlighted important avenues for further progress in terms of standardized data collection, data integration, method development and process integration. In particular, we focus on (a) important data gaps and new initiatives to close them, for example through space- and airborne sensors, (b) how various data sources and types can be integrated, (c) how uncertainty can be assessed in data-driven analyses and (d) how Big Data and machine learning approaches have opened new ways of investigating processes rather than simply describing patterns. We discuss how Big Data opens up new opportunities, but also poses new challenges to macroecological research. In the future, it will be essential to carefully assess data quality, the reproducibility of data compilation and analytical methods, and the communication of uncertainties. Major progress in the field will depend on the definition of data standards and workflows for macroecology, such that scientific quality and integrity are guaranteed, and collaboration in research projects is made easier.  相似文献   
89.
A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.  相似文献   
90.
Studies of genetic adaptation in plant populations along elevation gradients in mountains have a long history, but there has until now been neither a synthesis of how frequently plant populations exhibit adaptation to elevation nor an evaluation of how consistent underlying trait differences across species are. We reviewed studies of adaptation along elevation gradients (i) from a meta‐analysis of phenotypic differentiation of three traits (height, biomass and phenology) from plants growing in 70 common garden experiments; (ii) by testing elevation adaptation using three fitness proxies (survival, reproductive output and biomass) from 14 reciprocal transplant experiments; (iii) by qualitatively assessing information at the molecular level, from 10 genomewide surveys and candidate gene approaches. We found that plants originating from high elevations were generally shorter and produced less biomass, but phenology did not vary consistently. We found significant evidence for elevation adaptation in terms of survival and biomass, but not for reproductive output. Variation in phenotypic and fitness responses to elevation across species was not related to life history traits or to environmental conditions. Molecular studies, which have focussed mainly on loci related to plant physiology and phenology, also provide evidence for adaptation along elevation gradients. Together, these studies indicate that genetically based trait differentiation and adaptation to elevation are widespread in plants. We conclude that a better understanding of the mechanisms underlying adaptation, not only to elevation but also to environmental change, will require more studies combining the ecological and molecular approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号