首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   11篇
  361篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   6篇
  2019年   7篇
  2018年   13篇
  2017年   18篇
  2016年   15篇
  2015年   21篇
  2014年   26篇
  2013年   23篇
  2012年   25篇
  2011年   38篇
  2010年   20篇
  2009年   19篇
  2008年   11篇
  2007年   21篇
  2006年   16篇
  2005年   13篇
  2004年   12篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1981年   1篇
  1969年   1篇
排序方式: 共有361条查询结果,搜索用时 0 毫秒
11.
Antibiotic resistance is recognized as a global threat to public health. The selection and evolution of antibiotic resistance in clinical pathogens were believed to be majorly driven by the imprudent use of antibiotics. However, concerns regarding the same, through selection pressure by a multitude of other antimicrobial agents, such as heavy metals, are also growing. Heavy metal contamination co-selects antibiotic and metal resistance through numerous mechanisms, such as co-resistance and cross-resistance. Here, we have reviewed the role of heavy metals as antimicrobial resistance driving agents and the underlying concept and mechanisms of co-selection, while also highlighting the scarcity of studies explicitly inspecting the process of co-selection in clinical settings. Prospective strategies to manage heavy metal-induced antibiotic resistance have also been deliberated, underlining the need to find specific inhibitors so that alternate medicinal combinations can be added to the existing therapeutic armamentarium.  相似文献   
12.
Bacillus anthracis Ser/Thr protein kinase PrkC (BasPrkC) is important for virulence of the bacterium within the host. Homologs of PrkC and its cognate phosphatase PrpC (BasPrpC) are the most conserved mediators of signaling events in diverse bacteria. BasPrkC homolog in Bacillus subtilis regulates critical processes like spore germination and BasPrpC modulates the activity of BasPrkC by dephosphorylation. So far, biochemical and genetic studies have provided important insights into the roles of BasPrkC and BasPrpC; however, regulation of their activities is not known. We studied the regulation of BasPrkC/BasPrpC pair and observed that Zn2+ metal ions can alter their activities. Zn2+ promotes BasPrkC kinase activity while inhibits the BasPrpC phosphatase activity. Concentration of Zn2+ in growing B. anthracis cells was found to vary with growth phase. Zn2+ was found to be lowest in log phase cells while it was highest in spores. This variation in Zn2+ concentration is significant for understanding the antagonistic activities of BasPrkC/BasPrpC pair. Our results also show that BasPrkC activity is modulated by temperature changes and kinase inhibitors. Additionally, we identified Elongation Factor Tu (BasEf-Tu) as a substrate of BasPrkC/BasPrpC pair and assessed the impact of their regulation on BasEf-Tu phosphorylation. Based on these results, we propose Zn2+ as an important regulator of BasPrkC/BasPrpC mediated phosphorylation cascades. Thus, this study reveals additional means by which BasPrkC can be activated leading to autophosphorylation and substrate phosphorylation.  相似文献   
13.
14.
Recently attempts have been made to establish the presence and to determine the metabolic versatility of microorganisms in the terrestrial deep subsurface at the Savannah River Plant, Aiken, SC, USA. Sediment samples obtained at 20 different depths of up to 526 m were examined to determine carbon mineralization under aerobic, sulfate-reducing, and methanogenic conditions. The evolution of14CO2 from radiolabelled glucose was observed under aerobic conditions in all sediments, whereas pyridine was transformed in 50% of the 20 sediments and indole was metabolized in 85% of the sediments. Glucose mineralization in certain sediments was comparable to that in the surface environment. Sulfate was reduced in only five sediments, and two were carbon limited. Methane production was detected in ten sediments amended with formate only after long-term incubations. The transformation of indole and pyridine was only rarely observed under sulfate-reducing conditions and was never detected in methanogenic incubations. This study provides information concerning the metabolic capability of both aerobic and anaerobic microorganisms in the deep subsurface and may prove useful in determining the feasibility of microbial decontamination of such environments.  相似文献   
15.
By using low temperature fluorescence spectroscopy, it has been shown that exposing chloroplast thylakoid membranes to acidic pH reversibly decreases the fluorescence of photosystem II while the fluorescence of photosystem I increases [P. Singh-Rawal et al. (2010) Evidence that pH can drive state transitions in isolated thylakoid membranes from spinach, Photochem Photobiol Sci, 9 830-837]. In order to shed light on the origin of these changes, we performed circular dichroism (CD) spectroscopy on freshly isolated pea thylakoid membranes. We show that the magnitude of the psi-type CD, which is associated with the presence of chirally ordered macroarrays of the chromophores in intact thylakoid membranes, decreases gradually and reversibly upon gradually lowering the pH of the medium from 7.5 to 4.5 (psi, polymer or salt induced). The same treatment, as shown on thylakoid membranes washed in hypotonic low salt medium possessing no psi-type bands, induces no discernible change in the excitonic CD. These data show that while no change in the pigment-pigment interactions and thus in the molecular organization of the bulk protein complexes can be held responsible for the observed changes in the fluorescence, acidification of the medium significantly alters the macro-organization of the complexes, hence providing an explanation for the pH-induced redistribution of the excitation energy between the two photosystems. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   
16.
A rapid and sensitive gold-nanobioprobe based immunoassay format has been presented for the detection of capsular Vi polysaccharide of Salmonella enterica serovar Typhi (surface antigen) using anti-Vi antibodies. The Vi antigen was extracted from serovar Typhi cells, under the optimised growth conditions for its over-expression. Anti-Vi antibodies were produced and conjugated with gold nanoparticles (GNPs) of definite size (~30 nm), which served as the nano-bioprobe in the detection system. A sandwich immunoassay was developed using nitrocellulose dot blot comb (8/12 wells) membranes immobilized with anti-Salmonella antibodies at the optimal concentration (43 ng spot(-1)). The Vi antigen in the clinical isolates, spiked samples and also in the standard strain (serovar Typhi Ty2) was detected by measuring the colour intensity of GNPs and correlating it with the concentration of serovar Typhi in samples. Using this developed immunoassay technique Vi positive serovar Typhi strains could be detected with a sensitivity of up to 10(2) cells mL(-1) in the clinical isolates as well as in the spiked samples. The developed immunoassay technique could be useful for the detection of typhoid fever and may be important from an epidemiological point of view.  相似文献   
17.
Chloride is an indispensable factor for the functioning of oxygen evolving complex (OEC) and has protective and activating effects on photosystem II. In this study we have investigated mainly by EPR, the properties of chloride-sufficient, chloride-deficient and chloride-depleted thylakoid membranes and photosystem II enriched membranes from spinach. The results on the effects of different chloride depletion methods on the structural and functional aspects of photosystem II showed that chloride-depletion by treating PS II membranes with high pH is a relatively harsh way causing a significant and irreparable damage to the PS II donor side. Damage to the acceptor side of PS II was recovered almost fully in chloride-deficient as well as chloride-depleted PS II membranes.  相似文献   
18.
Cellular maintenance of protein homeostasis is essential for normal cellular function. The ubiquitin-proteasome system (UPS) plays a central role in processing cellular proteins destined for degradation, but little is currently known about how misfolded cytosolic proteins are recognized by protein quality control machinery and targeted to the UPS for degradation in mammalian cells. Destabilizing domains (DDs) are small protein domains that are unstable and degraded in the absence of ligand, but whose stability is rescued by binding to a high affinity cell-permeable ligand. In the work presented here, we investigate the biophysical properties and cellular fates of a panel of FKBP12 mutants displaying a range of stabilities when expressed in mammalian cells. Our findings correlate observed cellular instability to both the propensity of the protein domain to unfold in vitro and the extent of ubiquitination of the protein in the non-permissive (ligand-free) state. We propose a model in which removal of stabilizing ligand causes the DD to unfold and be rapidly ubiquitinated by the UPS for degradation at the proteasome. The conditional nature of DD stability allows a rapid and non-perturbing switch from stable protein to unstable UPS substrate unlike other methods currently used to interrogate protein quality control, providing tunable control of degradation rates.  相似文献   
19.
20.
The effect of NaCl on two vital processes of cyanobacterial metabolism, viz. N(2) fixation and oxygenic photosynthesis, was studied in the cyanobacterium Nostoc muscorum grown diazotrophically. An increase in NaCl concentration suppressed the formation of heterocyst and adversely affected the nitrogenase activity in the parent, whereas in Li(+)-R and Na(+)-R mutants NaCl stress did not cause any adverse effect. The rate of photosynthetic O(2)-evolution was also adversely affected by the NaCl stress, but the magnitude was less than that of nitrogenase activity. L-Proline, the well-known osmoprotectant, provided protection to the cyanobacterium against NaCl stress. The parent strain utilized L-proline as a nitrogen source and suppressed heterocyst formation and nitrogenase activity, while mutants showed normal heterocyst frequency and nitrogenase activity. Therefore, it may be that the proline metabolism is altered as a result of mutation. The intracellular levels of proline in the parent were enhanced about threefold in the medium containing 1 mol x m(-3) proline, while in mutants there was no significant increase in the intracellular level of proline. In the medium containing both NaCl and proline, the intracellular level of proline was enhanced in the parent as well as in both mutant strains. This suggests that the parent strain possessed both normal proline uptake and salt-induced proline uptake systems, whereas the mutant strains were defective in normal proline uptake and had only salt-induced proline uptake. The over-accumulation of proline in the presence of NaCl stress is due either to the loss of proline oxidase activity or to the accumulation of exogenous proline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号