首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   34篇
  2023年   6篇
  2022年   12篇
  2021年   17篇
  2020年   13篇
  2019年   16篇
  2018年   18篇
  2017年   18篇
  2016年   24篇
  2015年   22篇
  2014年   43篇
  2013年   52篇
  2012年   67篇
  2011年   52篇
  2010年   33篇
  2009年   25篇
  2008年   29篇
  2007年   27篇
  2006年   34篇
  2005年   24篇
  2004年   26篇
  2003年   15篇
  2002年   13篇
  2001年   11篇
  2000年   15篇
  1999年   7篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   7篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   8篇
  1986年   4篇
  1985年   8篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
排序方式: 共有710条查询结果,搜索用时 15 毫秒
81.
82.
Loss of function of dystonin cytoskeletal linker proteins causes neurodegeneration in dystonia musculorum (dt) mutant mice. Although much investigation has focused on understanding dt pathology, the diverse cellular functions of dystonin isoforms remain poorly characterized. In this paper, we highlight novel functions of the dystonin-a2 isoform in mediating microtubule (MT) stability, Golgi organization, and flux through the secretory pathway. Using dystonin mutant mice combined with isoform-specific loss-of-function analysis, we found dystonin-a2 bound to MT-associated protein 1B (MAP1B) in the centrosomal region, where it maintained MT acetylation. In dt neurons, absence of the MAP1B-dystonin-a2 interaction resulted in altered MAP1B perikaryal localization, leading to MT deacetylation and instability. Deacetylated MT accumulation resulted in Golgi fragmentation and prevented anterograde trafficking via motor proteins. Maintenance of MT acetylation through trichostatin A administration or MAP1B overexpression mitigated the observed defect. These cellular aberrations are apparent in prephenotype dorsal root ganglia and primary sensory neurons from dt mice, suggesting they are causal in the disorder.  相似文献   
83.
We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.  相似文献   
84.
No systemic therapy is effective against pancreatic cancer (PC). Pancreatic cancer stem cells (PCSC) are hypothesized to account for therapeutic resistance. Several PCSC subpopulations were reported, each characterized by different markers. To be able to target PCSC, we sought to better define this putative heterogeneity. Therefore, we tested most of the known putative PCSC markers in established and fresh tumor cell lines. CD20, CD24, CD44, CD133, CD184 (CXCR4), CD326 (EpCam, ESA), Sox-2, OCT 3/4, and the side-population (SP) were tested in five PC cell lines, and the effects of confluency, hypoxia, radiation, and gemcitabine on the SP. The testing phase suggested several putative PCSC populations that were further tested and validated for their tumor-initiating capacity against known PCSC in 3 established and 1 fresh PC cell lines. Cell surface and intracellular markers showed significant variability among cell lines. SP was the only common marker in all cell lines and consistently less than 1%. SP response to confluence, hypoxia, radiation, and gemcitabine was inconsistent between cell lines. The initial testing phase suggested that SP/CD44-CD24-CD326+ cells might be a novel PCSC subpopulation. Tumor initiation capacity tests in nude mice confirmed their increased tumorigenicity over previously reported PCSC. Our data better define the heterogeneity of reported PCSC in cell lines tested in this study. We propose that prior to targeting PC via PCSC, one will need to gain more insight into this heterogeneity. Finally, we show that SP/CD44-CD24-CD326+ cells are a novel subpopulation of pancreatic cancer tumor initiating cells. Further mechanistic studies may lead to better targeting of PC via targeting this novel PCSC.  相似文献   
85.
86.
As our population demographics change, osteoarthritis and cartilage defects are becoming more prevalent. The discovery of stems cells and their ability for indefinite regeneration has revolutionised the way cartilage problems are viewed. Tissue engineering has been shown to be the ideal way of repairing articular cartilage lesions, i.e. back to native tissue. Cartilage is an ideal tissue engineering target as it is avascular, aneural and alymphatic. The two main types of stem cells being investigated in chondrogenesis are embryological and mesenchymal stem cells. Research into embryological stem cells has been surrounded by controversy because of ethical, religious and social concerns. We discuss the use of embryological and mesenchymal stem cells in cartilage repair and the various factors involved in the differentiation into chondrocytes. We also discuss commonly used mesenchymal stem cell markers and their limitations.  相似文献   
87.
Rhodopsins (Rhs) are light sensors, and Rh1 is the major Rh in the Drosophila photoreceptor rhabdomere membrane. Upon photoactivation, a fraction of Rh1 is internalized and degraded, but it remains unclear how the rhabdomeric Rh1 pool is replenished and what molecular players are involved. Here, we show that Crag, a DENN protein, is a guanine nucleotide exchange factor for Rab11 that is required for the homeostasis of Rh1 upon light exposure. The absence of Crag causes a light-induced accumulation of cytoplasmic Rh1, and loss of Crag or Rab11 leads to a similar photoreceptor degeneration in adult flies. Furthermore, the defects associated with loss of Crag can be partially rescued with a constitutive active form of Rab11. We propose that upon light stimulation, Crag is required for trafficking of Rh from the trans-Golgi network to rhabdomere membranes via a Rab11-dependent vesicular transport.  相似文献   
88.
α-Amylase was extracted and purified from soybean seeds to apparent homogeneity by affinity precipitation. The homogeneous enzyme preparation was immobilized on gelatin matrix using glutaraldehyde as an organic hardener. Response surface methodology (RSM) and 3-level-3-factor Box–Behnken design was employed to evaluate the effects of immobilization parameters, such as gelatin concentration, glutaraldehyde concentration and hardening time on the activity of immobilized α-amylase. The results showed that 20% gelatin (w/v), 10% glutaraldehyde (v/v) and 1 h hardening time yielded an optimum immobilization of 82.5%.  相似文献   
89.
Neuronal differentiation involving neurite growth is dependent on environmental cues which are relayed by signalling pathways to actin cytoskeletal remodelling. C3G, the exchange factor for Rap1, functions in pathways leading to actin reorganization and filopodia formation, processes required during neurite growth. In the present study, we have analyzed the function of C3G, in regulating neuronal cell survival and plasticity. Human neuroblastoma cells, IMR-32 induced to differentiate by serum starvation or by treatment with nerve growth factor (NGF) or forskolin showed enhanced C3G protein levels. Transient over-expression of C3G stimulated neurite growth and also increased responsiveness to NGF and serum deprivation induced differentiation. C3G-induced neurite growth was dependent on both its catalytic and N-terminal regulatory domains, and on the functions of Cdc42 and Rap1. Knockdown of C3G using small hairpin RNA inhibited forskolin and NGF-induced morphological differentiation of IMR-32 cells. Forskolin-induced differentiation was dependent on catalytic activity of C3G. Forskolin and NGF treatment resulted in phosphorylation of C3G at Tyr504 predominantly in the Golgi. C3G expression induced the cell cycle inhibitor p21 and C3G knockdown enhanced cell death in response to serum starvation. These findings demonstrate a novel function for C3G in regulating survival and differentiation of human neuroblastoma cells.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号