首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2863篇
  免费   147篇
  2023年   16篇
  2022年   37篇
  2021年   77篇
  2020年   50篇
  2019年   46篇
  2018年   67篇
  2017年   66篇
  2016年   72篇
  2015年   80篇
  2014年   128篇
  2013年   163篇
  2012年   225篇
  2011年   173篇
  2010年   113篇
  2009年   107篇
  2008年   140篇
  2007年   139篇
  2006年   110篇
  2005年   103篇
  2004年   93篇
  2003年   78篇
  2002年   87篇
  2001年   74篇
  2000年   75篇
  1999年   55篇
  1998年   19篇
  1997年   16篇
  1996年   33篇
  1995年   18篇
  1994年   18篇
  1993年   18篇
  1992年   48篇
  1991年   33篇
  1990年   26篇
  1989年   33篇
  1988年   25篇
  1987年   28篇
  1986年   18篇
  1985年   31篇
  1984年   26篇
  1982年   14篇
  1981年   17篇
  1980年   22篇
  1979年   26篇
  1978年   27篇
  1977年   17篇
  1975年   12篇
  1974年   13篇
  1973年   17篇
  1972年   13篇
排序方式: 共有3010条查询结果,搜索用时 31 毫秒
121.
Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW) on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm2, significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria.  相似文献   
122.
Effect of long term cholesterol diet withdrawal on accelerated atherosclerosis in iliac artery of New Zealand White (NZW) rabbits has not been explored so far. Atherosclerosis was thus induced in rabbits by a combination of balloon injury and atherogenic diet (AD) (1% cholesterol and 6% peanut oil) feeding for 8 weeks (baseline) followed by chow diet (CD) feeding for 4, 8, 16, 32, 50 and 64 weeks. The plaque characterization was done using histology, real time RT-PCR and vasoreactivity studies. Significant elevation in plasma lipids with AD feeding was normalized following 16 weeks of CD feeding. However, baseline comparison showed advanced plaque features even after 8 weeks of CD period with significant elevation in intima/media thickness ratio and plaque area later showing reduction at 50 and 64 weeks CD periods. Lesion lipid accumulation and CD68 positivity was maintained till 16 weeks of CD feeding which significantly reduced from 32 to 64 weeks CD periods. Baseline comparison showed significant increase in ground substance, MMP-9 and significant decrease in α-actin and collagen content at 8 weeks CD period indicating features of unstable plaque. These features regressed up to 64 weeks of CD. Partial restoration of functional vasoconstriction and vasorelaxation was seen after 64 weeks of CD feeding. mRNA expression of MCP-1, VCAM-1, collagen type I and III, MMP-9, TIMP-1, IFN-γ, TNF-α, IL-10 and eNOS supported the above findings. The study thus reveals insights into initial plaque instability and subsequent regression on AD withdrawal in this model. These results are suggestive of an appropriate window for drug intervention for plaque stability/regression and restenosis as well as improves understanding of plaque regression phenomenon in this model.  相似文献   
123.
Small molecules with the potential to initiate different types of programmed cell death could be useful ‘adjunct therapy’ where current anticancer modalities fail to generate significant activity due to a defective apoptotic machinery or resistance of cancer cells to the specific death mechanism induced by that treatment. The current study identified silibinin, for the first time, as one such natural agent, having dual efficacy against colorectal cancer (CRC) cells. First, silibinin rapidly induced oxidative stress in CRC SW480 cells due to reactive oxygen species (ROS) generation with a concomitant dissipation of mitchondrial potential (ΔΨm) and cytochrome c release leading to mild apoptosis as a biological effect. However, with increased exposure to silibinin, cytoplasmic vacuolization intensified within the cells followed by sequestration of the organelles, which inhibits the further release of cytochrome c. Interestingly, this decrease in apoptotic response correlated with increased autophagic events as evidenced by tracking the dynamics of LC3-II within the cells. Mechanistic studies revealed that silibinin strongly inhibited PIK3CA-AKT–MTOR but activated MAP2K1/2-MAPK1/3 pathways for its biological effects. Corroborating these effects, endoplasmic reticulum stress was generated and glucose uptake inhibition as well as energy restriction were induced by silibinin, thus, mimicking starvation-like conditions. Further, the cellular damage to tumor cells by silibinin was severe and irreparable due to sustained interference in essential cellular processes such as mitochondrial metabolism, phospholipid and protein synthesis, suggesting that silibinin harbors a deadly ‘double-edged sword’ against CRC cells thereby further advocating its clinical effectiveness against this malignancy.  相似文献   
124.
Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.  相似文献   
125.
126.
To understand protective roles of nitric oxide against salt stress, the effects of exogenous sodium nitroprusside on activities of lipoxygenase, peroxidase, phenylalanine ammonialyase, catalase, superoxide dismutase enzymes, proline accumulation, and distribution of sodium in soybean plants under salt were determined. Application of sodium nitroprusside + bacterium enhanced plant growth-promotion characteristics, activities of different enzymes, and proline accumulation in the presence of sodium nitroprusside under salt stress. Treatment with NaCl at 200 mM and sodium nitroprusside (0.1 mM) reduced Na+ levels but increased K+ levels in leaves in comparison with the NaCl-treated plants. Correspondingly, the plants treated with exogenous sodium nitroprusside and NaCl maintained a lower ratio of [Na+]/[K+] in NaCl-stressed plants.  相似文献   
127.
A role for HflX in 50S-biogenesis was suggested based on its similarity to other GTPases involved in this process. It possesses a G-domain, flanked by uncharacterized N- and C-terminal domains. Intriguingly, Escherichia coli HflX was shown to hydrolyze both GTP and adenosine triphosphate (ATP), and it was unclear whether G-domain alone would explain ATP hydrolysis too. Here, based on structural bioinformatics analysis, we suspected the possible existence of an additional nucleotide-binding domain (ND1) at the N-terminus. Biochemical studies affirm that this domain is capable of hydrolyzing ATP and GTP. Surprisingly, not only ND1 but also the G-domain (ND2) can hydrolyze GTP and ATP too. Further; we recognize that ND1 and ND2 influence each other’s hydrolysis activities via two salt bridges, i.e. E29-R257 and Q28-N207. It appears that the salt bridges are important in clamping the two NTPase domains together; disrupting these unfastens ND1 and ND2 and invokes domain movements. Kinetic studies suggest an important but complex regulation of the hydrolysis activities of ND1 and ND2. Overall, we identify, two separate nucleotide-binding domains possessing both ATP and GTP hydrolysis activities, coupled with an intricate inter-domain regulation for Escherichia coli HflX.  相似文献   
128.
Phosphatidylinositol-3,4,5-triphosphate (PIP3) and phosphatidylinositol-4,5-biphosphate (PIP2) are two well-known membrane bound polyphosphoinositides. Diabetes is associated with impaired glucose metabolism. Using a 3T3L1 adipocyte cell model, this study investigated the role of PIP3 and PIP2 on insulin stimulated glucose metabolism in high glucose (HG) treated cells. Exogenous PIP3 supplementation (1, 5, or 10 nM) increased the phosphorylation of AKT and PKCζ/λ, which in turn upregulated GLUT4 total protein expression as well as its surface expression, glucose uptake, and glucose utilization in cells exposed to HG (25 mM); however, PIP2 had no effect. Comparative signal silencing studies with antisense AKT2 and antisense PKCζ revealed that phosphorylation of PKCζ/λ is more effective in PIP3 mediated GLUT4 activation and glucose utilization than in AKT phosphorylation. Supplementation with PIP3 in combination with insulin enhanced glucose uptake and glucose utilization compared to PIP2 with insulin, or insulin alone, in HG-treated adipocytes. This suggests that a decrease in cellular PIP3 levels may cause impaired insulin sensitivity in diabetes. PIP3 supplementation also prevented HG-induced MCP-1 and resistin secretion and lowered adiponectin levels. This study for the first time demonstrates that PIP3 but not PIP2 plays an important role in GLUT4 upregulation and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation. Whether PIP3 levels in blood can be used as a biomarker of insulin resistance in diabetes needs further investigation.  相似文献   
129.
130.
Abstract

The effect of 2, 4-dinitrophenol (DNP) on the extracelluar polysaccharides (EPS), cell surface charge, and the hydrophobicity of six marine bacterial cultures was studied, and its influence on attachment of these bacteria to glass and polystyrene was evaluated. DNP treatment did not influence cell surface charge and EPS production, but had a significant effect on hydrophobicity of both hydrophilic (p = 0.05) and hydrophobic (p = 0.01) cultures. Significant reduction in the attachment of all the six cultures to glass (p = 0.02) and polystyrene (p = 0.03) was observed after DNP treatment. Moreover, hydrophobicity but not the cell surface charge or EPS production influenced bacterial cell attachment to glass and polystyrene. From this study, it was evident that DNP treatment influenced bacterial cell surface hydrophobicity, which in turn, reduced bacterial adhesion to surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号