首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2628篇
  免费   181篇
  国内免费   3篇
  2812篇
  2023年   19篇
  2022年   39篇
  2021年   56篇
  2020年   42篇
  2019年   38篇
  2018年   59篇
  2017年   73篇
  2016年   97篇
  2015年   143篇
  2014年   180篇
  2013年   166篇
  2012年   199篇
  2011年   215篇
  2010年   136篇
  2009年   105篇
  2008年   148篇
  2007年   126篇
  2006年   139篇
  2005年   133篇
  2004年   120篇
  2003年   107篇
  2002年   73篇
  2001年   27篇
  2000年   24篇
  1999年   33篇
  1998年   26篇
  1997年   24篇
  1996年   22篇
  1995年   15篇
  1994年   21篇
  1993年   7篇
  1992年   23篇
  1991年   20篇
  1990年   17篇
  1989年   8篇
  1988年   7篇
  1987年   16篇
  1986年   6篇
  1985年   11篇
  1984年   6篇
  1983年   10篇
  1982年   11篇
  1981年   7篇
  1980年   5篇
  1979年   6篇
  1978年   12篇
  1977年   4篇
  1976年   4篇
  1975年   7篇
  1974年   7篇
排序方式: 共有2812条查询结果,搜索用时 12 毫秒
991.
The microevolutionary process of adaptive phenotypic differentiation of quantitative traits between populations or closely‐related taxa depends on the response of populations to the action of natural selection. However, this response can be constrained by the structure of the matrix of additive genetic variance and covariance between traits in each population ( G matrix). In the present study, we obtained additive genetic variance and narrow sense heritability for 25 floral and vegetative traits of three subspecies of Aquilegia vulgaris, and one subspecies of Aquilegia pyrenaica through a common garden crossing experiment. For two vegetative and one floral trait, we also obtained the G matrix and genetic correlations between traits in each subspecies. The amount of genetic variation available in wild populations is not responsible for the larger differentiation of vegetative than floral traits found in this group of columbines. However, the low heritability of some traits constrained their evolution because phenotypic variability among taxa was larger for traits with larger heritability. We confirmed that the process of diversification of the studied taxa involved shifts in the G matrix, mainly determined by changes in the genetic covariance between floral and vegetative traits, probably caused by linkage disequilibrium in narrow endemic taxa. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 252–261.  相似文献   
992.
993.
We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+ ≈ Pb2+ > Zn2+ > Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+ > Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations.Many proteins utilize metals to stabilize their structures or as cofactors to catalyze redox and other chemical reactions. Metals such as zinc, copper, iron, magnesium, cobalt, and manganese are required by most living organisms for their normal cellular functions. Essential metals are often present at low concentrations in the environment, however, and must be imported into cells, often at the expense of energy (Hanikenne et al., 2005; Merchant et al., 2006). In contrast to essential metals, toxic metals such as cadmium, lead, and mercury can disrupt cellular functions by competing with essential metals for their metal-binding sites and/or by altering the redox state of cells. Exposure of organisms to high concentrations of toxic metals can impair their cellular functions, growth, and reproduction. To prevent metal-induced cellular anomalies, organisms have evolved a variety of strategies to reduce the toxicity of heavy metals. One such strategy involves the selective binding of toxic metals in the cytoplasm by metal-binding proteins and other small molecules. As discussed below, both enzymatically and ribosomally synthesized Cys-rich peptides, including phytochelatins and metallothioneins (MTs), are utilized by a variety of organisms to sequester toxic heavy metals, including cadmium, mercury, lead, silver, and gold. The peptides may also serve as storage reserves for essential metals such as copper and zinc (Cobbett and Goldsbrough, 2002).Phytochelatins are enzymatically synthesized polypeptides containing repeating units of (γ-Glu-Cys)n-Gly, where n = 2 to 11 (Rauser, 1990), whereas MTs are genetically encoded, ribosomally synthesized polypeptides (Cobbett and Goldsbrough, 2002). MTs have molecular mass values ranging from 6 to 7 kD and contain approximately 20 conserved Cys residues (Cobbett and Goldsbrough, 2002; Romero-Isart and Vasák, 2002). Metals are characteristically bound to MT via the thiolate sulfur ligands of Cys residues (Kägi, 1991). It is estimated that the metal-saturated MT contains about 10% thiolate sulfur and bound metals by mass (Romero-Isart and Vasák, 2002). Structural analyses of metal-free and metal-complexed MTs demonstrated that MTs undergo a structural transition from a metal-free random-coil structure to a metal-bound compact dumbbell-shaped structure having metal saturated α- and β-domains (Pearce et al., 2000; Romero-Isart and Vasak, 2002; Hong and Maret, 2003). The N-terminal β-domain binds three metal ion equivalents, and the C-terminal α-domain binds four metal ion equivalents (Romero-Isart and Vasák, 2002; Vasák, 2005). Furthermore, several decades of work on MTs have provided a great deal of information regarding their metal-binding affinity, specificity, and domain selectivity for select metals (Cobbett and Goldsbrough, 2002; Romero-Isart and Vasák, 2002; Vasák, 2005).Fluorescence resonance energy transfer (FRET) involves the nonradioactive transfer of energy between the excited state of a luminescent or fluorescent donor molecule and a nearby acceptor molecule that has overlapping excited state transitions. Proteins that are modified to have efficient energy donor and acceptor domains and that undergo structural changes upon binding a specific ligand are good candidates for FRET-based sensors. For ligand-specific FRET-based biosensors, the distance and/or the orientation between the energy donor and acceptor molecules is changed upon ligand binding in a concentration-dependent manner (Selvin, 1995; Weiss, 2000; Hong and Maret, 2003; Looger et al., 2005). Relevant to this discussion, a FRET-based biosensor with GFP variants fused to MT was previously shown to be an effective means to monitor metal release during nitric oxide-induced signaling in endothelial cells (Pearce et al., 2000).Unicellular algae such as Chlamydomonas species are often found in areas that might be contaminated by toxic heavy metals (Merchant et al., 2006). Chlamydomonas species have also been shown to sequester toxic metals (e.g. cadmium and mercury) and have potential use for bioremediation of these metals (Cai et al., 1999; Adhiya et al., 2002; Siripornadulsil et al., 2002; He et al., 2011; Priyadarshani et al., 2011). To determine the kinetics and selectivity of exogenous heavy metal uptake as well as free heavy metal concentration in the cytoplasm of Chlamydomonas species, we developed an MT, FRET-based metal-binding sensor and expressed this in the cytoplasm of the unicellular green alga Chlamydomonas reinhardtii. We demonstrate that heavy metal uptake is rapid in C. reinhardtii and that cytoplasmic free heavy metal concentrations are substantially lower than exogenous free heavy metal concentrations, implying that heavy metals are rapidly sequestered by various biological molecules in the cell.  相似文献   
994.
995.
996.
The impact of culture conditions and addition of antioxidants to media on microspore embryogenesis in rapeseed (Brassica napus cv. ‘PF704’) was investigated. Different concentrations of ascorbic acid (0, 5, 10, 20, 50, 100, and 200 mg l?1) and alpha (α)-tocopherol (0, 5, 10, 20, 50, 100, and 200 mg l?1) were evaluated along with two temperature pretreatments (18 d at 30°C; 2 d at 32.5°C followed by 16 d at 30°C). In addition, combinations of reduced glutathione (0, 10, 50, and 100 mg l?1) and ascorbic acid (5 and 10 mg l?1) were tested. Microspore embryogenesis was significantly enhanced using 10 mg l?1 ascorbic acid (334 embryos per Petri dish) compared with untreated cultures (184 embryos per Petri dish) at 30°C. α-Tocopherol (5 and 10 mg l?1) enhanced (312 and 314 embryos per Petri dish, respectively) microspore embryogenesis relative to untreated cultures (213 embryos per Petri dish) at 30°C, although there were no significant differences among cultures treated with 5–50 mg l?1 α-tocopherol. When 50 mg l?1 α-tocopherol was combined with 5 or 10 mg l?1 ascorbic acid, embryogenesis was significantly enhanced (308 and 328 embryos per Petri dish, respectively) relative to other ascorbic acid levels. Moreover, 10 mg l?1 of reduced glutathione and 5 mg l?l ascorbic acid enhanced microspore embryogenesis (335 embryos per Petri dish) compared to cultures without reduced glutathione (275 embryos per Petri dish). Microspore embryogenesis could be improved by adding ascorbic acid, α-tocopherol, and reduced glutathione when the appropriate combination and temperature pretreatment were selected.  相似文献   
997.
We studied the soil seed bank in a possible scenario of fire regime shift and asked: (1) Does high fire frequency impact the density of seeds stored, species richness and evenness? (2) Overall, does high fire frequency produce changes in the presence–absence and abundance of species? The study was implemented in a Mediterranean Basin ecosystem in plots with increasing fire frequency (unburned, burned once and burned twice in the last 66 years). The number of seeds increased with fire frequency for all life forms (shrub, scrub, perennial forb, annual forb and perennial graminoid). Species richness of annual forbs also increased. Evenness of shrubs diminished because the number of seeds in all the species decreased, except C. albidus, which increased. Overall, differences in the abundance of species were found, mainly by depleting shrubs and increasing forbs. There were no differences in the presence–absence data. In conclusion, high fire frequencies act as a filtering factor for species of a larger size and advanced maturity age. In contrast, life forms of small size and rapid onset of reproductive maturity can be enhanced. This community conversion from woody to herbaceous soil seed banks is fundamental to identify vegetation changes in future regimes of high fire frequency.  相似文献   
998.

Background

Symbiosis genes (nod and nif) involved in nodulation and nitrogen fixation in legumes are plasmid-borne in Rhizobium. Rhizobial symbiotic variants (symbiovars) with distinct host specificity would depend on the type of symbiosis plasmid. In Rhizobium etli or in Rhizobium phaseoli, symbiovar phaseoli strains have the capacity to form nodules in Phaseolus vulgaris while symbiovar mimosae confers a broad host range including different mimosa trees.

Results

We report on the genome of R. etli symbiovar mimosae strain Mim1 and its comparison to that from R. etli symbiovar phaseoli strain CFN42. Differences were found in plasmids especially in the symbiosis plasmid, not only in nod gene sequences but in nod gene content. Differences in Nod factors deduced from the presence of nod genes, in secretion systems or ACC-deaminase could help explain the distinct host specificity. Genes involved in P. vulgaris exudate uptake were not found in symbiovar mimosae but hup genes (involved in hydrogen uptake) were found. Plasmid pRetCFN42a was partially contained in Mim1 and a plasmid (pRetMim1c) was found only in Mim1. Chromids were well conserved.

Conclusions

The genomic differences between the two symbiovars, mimosae and phaseoli may explain different host specificity. With the genomic analysis presented, the term symbiovar is validated. Furthermore, our data support that the generalist symbiovar mimosae may be older than the specialist symbiovar phaseoli.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-575) contains supplementary material, which is available to authorized users.  相似文献   
999.

Background

Engineered nanomaterials may release nanosized residues, by degradation, throughout their life cycle. These residues may be a threat for living organisms. They may be ingested by humans through food and water. Although the toxicity of pristine CeO2 nanoparticles (NPs) has been documented, there is a lack of studies on manufactured nanoparticles, which are often surface modified. Here, we investigated the potential adverse effects of CeO2 Nanobyk 3810™ NPs, used in wood care, and their residues, altered by light or acid.

Results

Human intestinal Caco-2 cells were exposed to residues degraded by daylight or in a medium simulating gastric acidity. Size and zeta potential were determined by dynamic light scattering. The surface structure and redox state of cerium were analyzed by transmission electronic microscopy (TEM) and X-ray absorption spectroscopy, respectively. Viability tests were performed in Caco-2 cells exposed to NPs. Cell morphology was imaged with scanning electronic microscopy. Gene expression profiles obtained from cells exposed to NPs before and after their alteration were compared, to highlight differences in cellular functions.No change in the cerium redox state was observed for altered NPs. All CeO2 NPs suspended in the culture medium became microsized. Cytotoxicity tests showed no toxicity after Caco-2 cell exposure to these various NPs up to 170 μg/mL (24 h and 72 h). Nevertheless, a more-sensitive whole-gene-expression study, based on a pathway-driven analysis, highlighted a modification of metabolic activity, especially mitochondrial function, by altered Nanobyk 3810™. The down-regulation of key genes of this pathway was validated by qRT-PCR. Conversely, Nanobyk 3810™ coated with ammonium citrate did not display any adverse effect at the same concentration.

Conclusion

The degraded nanoparticles were more toxic than their coated counterparts. Desorption of the outside layer was the most likely cause of this discrepancy in toxicity. It can be assumed that the safe design of engineered nanoparticles could include robust protective layers conferring on them greater resistance to alteration during their life cycle.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-700) contains supplementary material, which is available to authorized users.  相似文献   
1000.
Autism spectrum disorder (ASD) is a neurodevelopmental condition exhibiting impairments in behaviour, social and communication skills. These deficits may arise from aberrant functional connections that impact synchronization and effective neural communication. Neurofeedback training (NFT), based on operant conditioning of the electroencephalogram (EEG), has shown promise in addressing abnormalities in functional and structural connectivity. We tested the efficacy of NFT in reducing symptoms in children with ASD by targeting training to the mirror neuron system (MNS) via modulation of EEG mu rhythms. The human MNS has provided a neurobiological substrate for understanding concepts in social cognition relevant to behavioural and cognitive deficits observed in ASD. Furthermore, mu rhythms resemble MNS phenomenology supporting the argument that they are linked to perception and action. Thirty hours of NFT on ASD and typically developing (TD) children were assessed. Both groups completed an eyes-open/-closed EEG session as well as a mu suppression index assessment before and after training. Parents filled out pre- and post-behavioural questionnaires. The results showed improvements in ASD subjects but not in TDs. This suggests that induction of neuroplastic changes via NFT can normalize dysfunctional mirroring networks in children with autism, but the benefits are different for TD brains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号